| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptunhmeo.x |
⊢ 𝑋 = ∪ 𝐾 |
| 2 |
|
ptunhmeo.y |
⊢ 𝑌 = ∪ 𝐿 |
| 3 |
|
ptunhmeo.j |
⊢ 𝐽 = ( ∏t ‘ 𝐹 ) |
| 4 |
|
ptunhmeo.k |
⊢ 𝐾 = ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) |
| 5 |
|
ptunhmeo.l |
⊢ 𝐿 = ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) |
| 6 |
|
ptunhmeo.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∪ 𝑦 ) ) |
| 7 |
|
ptunhmeo.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 8 |
|
ptunhmeo.f |
⊢ ( 𝜑 → 𝐹 : 𝐶 ⟶ Top ) |
| 9 |
|
ptunhmeo.u |
⊢ ( 𝜑 → 𝐶 = ( 𝐴 ∪ 𝐵 ) ) |
| 10 |
|
ptunhmeo.i |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 11 |
|
vex |
⊢ 𝑥 ∈ V |
| 12 |
|
vex |
⊢ 𝑦 ∈ V |
| 13 |
11 12
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
| 14 |
11 12
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
| 15 |
13 14
|
uneq12d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( 𝑥 ∪ 𝑦 ) ) |
| 16 |
15
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝑥 ∪ 𝑦 ) ) |
| 17 |
6 16
|
eqtr4i |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) |
| 18 |
|
xp1st |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 1st ‘ 𝑧 ) ∈ 𝑋 ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) ∈ 𝑋 ) |
| 20 |
|
ixpeq2 |
⊢ ( ∀ 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) → X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 21 |
|
fvres |
⊢ ( 𝑛 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 22 |
21
|
unieqd |
⊢ ( 𝑛 ∈ 𝐴 → ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 23 |
20 22
|
mprg |
⊢ X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) |
| 24 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 25 |
24 9
|
sseqtrrid |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
| 26 |
7 25
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 27 |
8 25
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) |
| 28 |
4
|
ptuni |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) → X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ 𝐾 ) |
| 29 |
26 27 28
|
syl2anc |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑛 ) = ∪ 𝐾 ) |
| 30 |
23 29
|
eqtr3id |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐾 ) |
| 31 |
30 1
|
eqtr4di |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑋 ) |
| 33 |
19 32
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 34 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) → ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) |
| 35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) ∈ 𝑌 ) |
| 36 |
9
|
eqcomd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝐶 ) |
| 37 |
|
uneqdifeq |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 ↔ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
| 38 |
25 10 37
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 ∪ 𝐵 ) = 𝐶 ↔ ( 𝐶 ∖ 𝐴 ) = 𝐵 ) ) |
| 39 |
36 38
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∖ 𝐴 ) = 𝐵 ) |
| 40 |
39
|
ixpeq1d |
⊢ ( 𝜑 → X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) = X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 41 |
|
ixpeq2 |
⊢ ( ∀ 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) → X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 42 |
|
fvres |
⊢ ( 𝑛 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 43 |
42
|
unieqd |
⊢ ( 𝑛 ∈ 𝐵 → ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 44 |
41 43
|
mprg |
⊢ X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) |
| 45 |
|
ssun2 |
⊢ 𝐵 ⊆ ( 𝐴 ∪ 𝐵 ) |
| 46 |
45 9
|
sseqtrrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
| 47 |
7 46
|
ssexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 48 |
8 46
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
| 49 |
5
|
ptuni |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ 𝐿 ) |
| 50 |
47 48 49
|
syl2anc |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐵 ∪ ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑛 ) = ∪ 𝐿 ) |
| 51 |
44 50
|
eqtr3id |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) = ∪ 𝐿 ) |
| 52 |
51 2
|
eqtr4di |
⊢ ( 𝜑 → X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 53 |
40 52
|
eqtrd |
⊢ ( 𝜑 → X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 55 |
35 54
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 56 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → 𝐴 ⊆ 𝐶 ) |
| 57 |
|
undifixp |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ∧ ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ ( 𝐶 ∖ 𝐴 ) ∪ ( 𝐹 ‘ 𝑛 ) ∧ 𝐴 ⊆ 𝐶 ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ X 𝑛 ∈ 𝐶 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 58 |
33 55 56 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ X 𝑛 ∈ 𝐶 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 59 |
|
ixpfn |
⊢ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ∈ X 𝑛 ∈ 𝐶 ∪ ( 𝐹 ‘ 𝑛 ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) Fn 𝐶 ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) Fn 𝐶 ) |
| 61 |
|
dffn5 |
⊢ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) Fn 𝐶 ↔ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) |
| 62 |
60 61
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) = ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) |
| 63 |
62
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ) |
| 64 |
17 63
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ) |
| 65 |
|
pttop |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Top ) |
| 66 |
26 27 65
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝐹 ↾ 𝐴 ) ) ∈ Top ) |
| 67 |
4 66
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 68 |
1
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 69 |
67 68
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 70 |
|
pttop |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) |
| 71 |
47 48 70
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ ( 𝐹 ↾ 𝐵 ) ) ∈ Top ) |
| 72 |
5 71
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ Top ) |
| 73 |
2
|
toptopon |
⊢ ( 𝐿 ∈ Top ↔ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 74 |
72 73
|
sylib |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 75 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 76 |
69 74 75
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 77 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐶 ↔ 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) ) |
| 78 |
77
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ) |
| 79 |
|
elun |
⊢ ( 𝑘 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 80 |
78 79
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) |
| 81 |
|
ixpfn |
⊢ ( ( 1st ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 82 |
33 81
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 83 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 84 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) = 𝑌 ) |
| 85 |
35 84
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 86 |
|
ixpfn |
⊢ ( ( 2nd ‘ 𝑧 ) ∈ X 𝑛 ∈ 𝐵 ∪ ( 𝐹 ‘ 𝑛 ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 88 |
87
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 89 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 90 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → 𝑘 ∈ 𝐴 ) |
| 91 |
|
fvun1 |
⊢ ( ( ( 1st ‘ 𝑧 ) Fn 𝐴 ∧ ( 2nd ‘ 𝑧 ) Fn 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 92 |
83 88 89 90 91
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 93 |
92
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 94 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 95 |
13
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) |
| 96 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 97 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 98 |
96 97
|
cnmpt1st |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑥 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐾 ) ) |
| 99 |
95 98
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 1st ‘ 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐾 ) ) |
| 100 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 101 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ) |
| 102 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) |
| 103 |
1 4
|
ptpjcn |
⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ Top ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐾 Cn ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) ) ) |
| 104 |
100 101 102 103
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐾 Cn ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) ) ) |
| 105 |
|
fvres |
⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 106 |
105
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 107 |
106
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐾 Cn ( ( 𝐹 ↾ 𝐴 ) ‘ 𝑘 ) ) = ( 𝐾 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 108 |
104 107
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐾 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 109 |
|
fveq1 |
⊢ ( 𝑓 = ( 1st ‘ 𝑧 ) → ( 𝑓 ‘ 𝑘 ) = ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 110 |
94 99 96 108 109
|
cnmpt11 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 1st ‘ 𝑧 ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 111 |
93 110
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 112 |
82
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 1st ‘ 𝑧 ) Fn 𝐴 ) |
| 113 |
87
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 2nd ‘ 𝑧 ) Fn 𝐵 ) |
| 114 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
| 115 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → 𝑘 ∈ 𝐵 ) |
| 116 |
|
fvun2 |
⊢ ( ( ( 1st ‘ 𝑧 ) Fn 𝐴 ∧ ( 2nd ‘ 𝑧 ) Fn 𝐵 ∧ ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝑘 ∈ 𝐵 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 117 |
112 113 114 115 116
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 ∈ ( 𝑋 × 𝑌 ) ) → ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) = ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 118 |
117
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) = ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ) |
| 119 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 120 |
14
|
mpompt |
⊢ ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) |
| 121 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 122 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 123 |
121 122
|
cnmpt2nd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝑦 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐿 ) ) |
| 124 |
120 123
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 2nd ‘ 𝑧 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐿 ) ) |
| 125 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐵 ∈ V ) |
| 126 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ) |
| 127 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) |
| 128 |
2 5
|
ptpjcn |
⊢ ( ( 𝐵 ∈ V ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 ⟶ Top ∧ 𝑘 ∈ 𝐵 ) → ( 𝑓 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐿 Cn ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ) ) |
| 129 |
125 126 127 128
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑓 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐿 Cn ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ) ) |
| 130 |
|
fvres |
⊢ ( 𝑘 ∈ 𝐵 → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 131 |
130
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 132 |
131
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝐿 Cn ( ( 𝐹 ↾ 𝐵 ) ‘ 𝑘 ) ) = ( 𝐿 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 133 |
129 132
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑓 ∈ 𝑌 ↦ ( 𝑓 ‘ 𝑘 ) ) ∈ ( 𝐿 Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 134 |
|
fveq1 |
⊢ ( 𝑓 = ( 2nd ‘ 𝑧 ) → ( 𝑓 ‘ 𝑘 ) = ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) |
| 135 |
119 124 122 133 134
|
cnmpt11 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( 2nd ‘ 𝑧 ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 136 |
118 135
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 137 |
111 136
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ 𝐵 ) ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 138 |
80 137
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐶 ) → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn ( 𝐹 ‘ 𝑘 ) ) ) |
| 139 |
3 76 7 8 138
|
ptcn |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑘 ∈ 𝐶 ↦ ( ( ( 1st ‘ 𝑧 ) ∪ ( 2nd ‘ 𝑧 ) ) ‘ 𝑘 ) ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 140 |
64 139
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 141 |
1 2 3 4 5 6 7 8 9 10
|
ptuncnv |
⊢ ( 𝜑 → ◡ 𝐺 = ( 𝑧 ∈ ∪ 𝐽 ↦ 〈 ( 𝑧 ↾ 𝐴 ) , ( 𝑧 ↾ 𝐵 ) 〉 ) ) |
| 142 |
|
pttop |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 : 𝐶 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 143 |
7 8 142
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 144 |
3 143
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 145 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 146 |
145
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 147 |
144 146
|
sylib |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 148 |
145 3 4
|
ptrescn |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 : 𝐶 ⟶ Top ∧ 𝐴 ⊆ 𝐶 ) → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 149 |
7 8 25 148
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐴 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 150 |
145 3 5
|
ptrescn |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐹 : 𝐶 ⟶ Top ∧ 𝐵 ⊆ 𝐶 ) → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 151 |
7 8 46 150
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐽 ↦ ( 𝑧 ↾ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐿 ) ) |
| 152 |
147 149 151
|
cnmpt1t |
⊢ ( 𝜑 → ( 𝑧 ∈ ∪ 𝐽 ↦ 〈 ( 𝑧 ↾ 𝐴 ) , ( 𝑧 ↾ 𝐵 ) 〉 ) ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 153 |
141 152
|
eqeltrd |
⊢ ( 𝜑 → ◡ 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) |
| 154 |
|
ishmeo |
⊢ ( 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Homeo 𝐽 ) ↔ ( 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ∧ ◡ 𝐺 ∈ ( 𝐽 Cn ( 𝐾 ×t 𝐿 ) ) ) ) |
| 155 |
140 153 154
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ ( ( 𝐾 ×t 𝐿 ) Homeo 𝐽 ) ) |