| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptunhmeo.x |
|
| 2 |
|
ptunhmeo.y |
|
| 3 |
|
ptunhmeo.j |
|
| 4 |
|
ptunhmeo.k |
|
| 5 |
|
ptunhmeo.l |
|
| 6 |
|
ptunhmeo.g |
|
| 7 |
|
ptunhmeo.c |
|
| 8 |
|
ptunhmeo.f |
|
| 9 |
|
ptunhmeo.u |
|
| 10 |
|
ptunhmeo.i |
|
| 11 |
|
vex |
|
| 12 |
|
vex |
|
| 13 |
11 12
|
op1std |
|
| 14 |
11 12
|
op2ndd |
|
| 15 |
13 14
|
uneq12d |
|
| 16 |
15
|
mpompt |
|
| 17 |
6 16
|
eqtr4i |
|
| 18 |
|
xp1st |
|
| 19 |
18
|
adantl |
|
| 20 |
|
ixpeq2 |
|
| 21 |
|
fvres |
|
| 22 |
21
|
unieqd |
|
| 23 |
20 22
|
mprg |
|
| 24 |
|
ssun1 |
|
| 25 |
24 9
|
sseqtrrid |
|
| 26 |
7 25
|
ssexd |
|
| 27 |
8 25
|
fssresd |
|
| 28 |
4
|
ptuni |
|
| 29 |
26 27 28
|
syl2anc |
|
| 30 |
23 29
|
eqtr3id |
|
| 31 |
30 1
|
eqtr4di |
|
| 32 |
31
|
adantr |
|
| 33 |
19 32
|
eleqtrrd |
|
| 34 |
|
xp2nd |
|
| 35 |
34
|
adantl |
|
| 36 |
9
|
eqcomd |
|
| 37 |
|
uneqdifeq |
|
| 38 |
25 10 37
|
syl2anc |
|
| 39 |
36 38
|
mpbid |
|
| 40 |
39
|
ixpeq1d |
|
| 41 |
|
ixpeq2 |
|
| 42 |
|
fvres |
|
| 43 |
42
|
unieqd |
|
| 44 |
41 43
|
mprg |
|
| 45 |
|
ssun2 |
|
| 46 |
45 9
|
sseqtrrid |
|
| 47 |
7 46
|
ssexd |
|
| 48 |
8 46
|
fssresd |
|
| 49 |
5
|
ptuni |
|
| 50 |
47 48 49
|
syl2anc |
|
| 51 |
44 50
|
eqtr3id |
|
| 52 |
51 2
|
eqtr4di |
|
| 53 |
40 52
|
eqtrd |
|
| 54 |
53
|
adantr |
|
| 55 |
35 54
|
eleqtrrd |
|
| 56 |
25
|
adantr |
|
| 57 |
|
undifixp |
|
| 58 |
33 55 56 57
|
syl3anc |
|
| 59 |
|
ixpfn |
|
| 60 |
58 59
|
syl |
|
| 61 |
|
dffn5 |
|
| 62 |
60 61
|
sylib |
|
| 63 |
62
|
mpteq2dva |
|
| 64 |
17 63
|
eqtrid |
|
| 65 |
|
pttop |
|
| 66 |
26 27 65
|
syl2anc |
|
| 67 |
4 66
|
eqeltrid |
|
| 68 |
1
|
toptopon |
|
| 69 |
67 68
|
sylib |
|
| 70 |
|
pttop |
|
| 71 |
47 48 70
|
syl2anc |
|
| 72 |
5 71
|
eqeltrid |
|
| 73 |
2
|
toptopon |
|
| 74 |
72 73
|
sylib |
|
| 75 |
|
txtopon |
|
| 76 |
69 74 75
|
syl2anc |
|
| 77 |
9
|
eleq2d |
|
| 78 |
77
|
biimpa |
|
| 79 |
|
elun |
|
| 80 |
78 79
|
sylib |
|
| 81 |
|
ixpfn |
|
| 82 |
33 81
|
syl |
|
| 83 |
82
|
adantlr |
|
| 84 |
52
|
adantr |
|
| 85 |
35 84
|
eleqtrrd |
|
| 86 |
|
ixpfn |
|
| 87 |
85 86
|
syl |
|
| 88 |
87
|
adantlr |
|
| 89 |
10
|
ad2antrr |
|
| 90 |
|
simplr |
|
| 91 |
|
fvun1 |
|
| 92 |
83 88 89 90 91
|
syl112anc |
|
| 93 |
92
|
mpteq2dva |
|
| 94 |
76
|
adantr |
|
| 95 |
13
|
mpompt |
|
| 96 |
69
|
adantr |
|
| 97 |
74
|
adantr |
|
| 98 |
96 97
|
cnmpt1st |
|
| 99 |
95 98
|
eqeltrid |
|
| 100 |
26
|
adantr |
|
| 101 |
27
|
adantr |
|
| 102 |
|
simpr |
|
| 103 |
1 4
|
ptpjcn |
|
| 104 |
100 101 102 103
|
syl3anc |
|
| 105 |
|
fvres |
|
| 106 |
105
|
adantl |
|
| 107 |
106
|
oveq2d |
|
| 108 |
104 107
|
eleqtrd |
|
| 109 |
|
fveq1 |
|
| 110 |
94 99 96 108 109
|
cnmpt11 |
|
| 111 |
93 110
|
eqeltrd |
|
| 112 |
82
|
adantlr |
|
| 113 |
87
|
adantlr |
|
| 114 |
10
|
ad2antrr |
|
| 115 |
|
simplr |
|
| 116 |
|
fvun2 |
|
| 117 |
112 113 114 115 116
|
syl112anc |
|
| 118 |
117
|
mpteq2dva |
|
| 119 |
76
|
adantr |
|
| 120 |
14
|
mpompt |
|
| 121 |
69
|
adantr |
|
| 122 |
74
|
adantr |
|
| 123 |
121 122
|
cnmpt2nd |
|
| 124 |
120 123
|
eqeltrid |
|
| 125 |
47
|
adantr |
|
| 126 |
48
|
adantr |
|
| 127 |
|
simpr |
|
| 128 |
2 5
|
ptpjcn |
|
| 129 |
125 126 127 128
|
syl3anc |
|
| 130 |
|
fvres |
|
| 131 |
130
|
adantl |
|
| 132 |
131
|
oveq2d |
|
| 133 |
129 132
|
eleqtrd |
|
| 134 |
|
fveq1 |
|
| 135 |
119 124 122 133 134
|
cnmpt11 |
|
| 136 |
118 135
|
eqeltrd |
|
| 137 |
111 136
|
jaodan |
|
| 138 |
80 137
|
syldan |
|
| 139 |
3 76 7 8 138
|
ptcn |
|
| 140 |
64 139
|
eqeltrd |
|
| 141 |
1 2 3 4 5 6 7 8 9 10
|
ptuncnv |
|
| 142 |
|
pttop |
|
| 143 |
7 8 142
|
syl2anc |
|
| 144 |
3 143
|
eqeltrid |
|
| 145 |
|
eqid |
|
| 146 |
145
|
toptopon |
|
| 147 |
144 146
|
sylib |
|
| 148 |
145 3 4
|
ptrescn |
|
| 149 |
7 8 25 148
|
syl3anc |
|
| 150 |
145 3 5
|
ptrescn |
|
| 151 |
7 8 46 150
|
syl3anc |
|
| 152 |
147 149 151
|
cnmpt1t |
|
| 153 |
141 152
|
eqeltrd |
|
| 154 |
|
ishmeo |
|
| 155 |
140 153 154
|
sylanbrc |
|