Metamath Proof Explorer


Theorem ptunhmeo

Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of ( A ^ B ) x. ( A ^ C ) = A ^ ( B + C ) . (Contributed by Mario Carneiro, 8-Feb-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses ptunhmeo.x X = K
ptunhmeo.y Y = L
ptunhmeo.j J = 𝑡 F
ptunhmeo.k K = 𝑡 F A
ptunhmeo.l L = 𝑡 F B
ptunhmeo.g G = x X , y Y x y
ptunhmeo.c φ C V
ptunhmeo.f φ F : C Top
ptunhmeo.u φ C = A B
ptunhmeo.i φ A B =
Assertion ptunhmeo φ G K × t L Homeo J

Proof

Step Hyp Ref Expression
1 ptunhmeo.x X = K
2 ptunhmeo.y Y = L
3 ptunhmeo.j J = 𝑡 F
4 ptunhmeo.k K = 𝑡 F A
5 ptunhmeo.l L = 𝑡 F B
6 ptunhmeo.g G = x X , y Y x y
7 ptunhmeo.c φ C V
8 ptunhmeo.f φ F : C Top
9 ptunhmeo.u φ C = A B
10 ptunhmeo.i φ A B =
11 vex x V
12 vex y V
13 11 12 op1std z = x y 1 st z = x
14 11 12 op2ndd z = x y 2 nd z = y
15 13 14 uneq12d z = x y 1 st z 2 nd z = x y
16 15 mpompt z X × Y 1 st z 2 nd z = x X , y Y x y
17 6 16 eqtr4i G = z X × Y 1 st z 2 nd z
18 xp1st z X × Y 1 st z X
19 18 adantl φ z X × Y 1 st z X
20 ixpeq2 n A F A n = F n n A F A n = n A F n
21 fvres n A F A n = F n
22 21 unieqd n A F A n = F n
23 20 22 mprg n A F A n = n A F n
24 ssun1 A A B
25 24 9 sseqtrrid φ A C
26 7 25 ssexd φ A V
27 8 25 fssresd φ F A : A Top
28 4 ptuni A V F A : A Top n A F A n = K
29 26 27 28 syl2anc φ n A F A n = K
30 23 29 eqtr3id φ n A F n = K
31 30 1 eqtr4di φ n A F n = X
32 31 adantr φ z X × Y n A F n = X
33 19 32 eleqtrrd φ z X × Y 1 st z n A F n
34 xp2nd z X × Y 2 nd z Y
35 34 adantl φ z X × Y 2 nd z Y
36 9 eqcomd φ A B = C
37 uneqdifeq A C A B = A B = C C A = B
38 25 10 37 syl2anc φ A B = C C A = B
39 36 38 mpbid φ C A = B
40 39 ixpeq1d φ n C A F n = n B F n
41 ixpeq2 n B F B n = F n n B F B n = n B F n
42 fvres n B F B n = F n
43 42 unieqd n B F B n = F n
44 41 43 mprg n B F B n = n B F n
45 ssun2 B A B
46 45 9 sseqtrrid φ B C
47 7 46 ssexd φ B V
48 8 46 fssresd φ F B : B Top
49 5 ptuni B V F B : B Top n B F B n = L
50 47 48 49 syl2anc φ n B F B n = L
51 44 50 eqtr3id φ n B F n = L
52 51 2 eqtr4di φ n B F n = Y
53 40 52 eqtrd φ n C A F n = Y
54 53 adantr φ z X × Y n C A F n = Y
55 35 54 eleqtrrd φ z X × Y 2 nd z n C A F n
56 25 adantr φ z X × Y A C
57 undifixp 1 st z n A F n 2 nd z n C A F n A C 1 st z 2 nd z n C F n
58 33 55 56 57 syl3anc φ z X × Y 1 st z 2 nd z n C F n
59 ixpfn 1 st z 2 nd z n C F n 1 st z 2 nd z Fn C
60 58 59 syl φ z X × Y 1 st z 2 nd z Fn C
61 dffn5 1 st z 2 nd z Fn C 1 st z 2 nd z = k C 1 st z 2 nd z k
62 60 61 sylib φ z X × Y 1 st z 2 nd z = k C 1 st z 2 nd z k
63 62 mpteq2dva φ z X × Y 1 st z 2 nd z = z X × Y k C 1 st z 2 nd z k
64 17 63 eqtrid φ G = z X × Y k C 1 st z 2 nd z k
65 pttop A V F A : A Top 𝑡 F A Top
66 26 27 65 syl2anc φ 𝑡 F A Top
67 4 66 eqeltrid φ K Top
68 1 toptopon K Top K TopOn X
69 67 68 sylib φ K TopOn X
70 pttop B V F B : B Top 𝑡 F B Top
71 47 48 70 syl2anc φ 𝑡 F B Top
72 5 71 eqeltrid φ L Top
73 2 toptopon L Top L TopOn Y
74 72 73 sylib φ L TopOn Y
75 txtopon K TopOn X L TopOn Y K × t L TopOn X × Y
76 69 74 75 syl2anc φ K × t L TopOn X × Y
77 9 eleq2d φ k C k A B
78 77 biimpa φ k C k A B
79 elun k A B k A k B
80 78 79 sylib φ k C k A k B
81 ixpfn 1 st z n A F n 1 st z Fn A
82 33 81 syl φ z X × Y 1 st z Fn A
83 82 adantlr φ k A z X × Y 1 st z Fn A
84 52 adantr φ z X × Y n B F n = Y
85 35 84 eleqtrrd φ z X × Y 2 nd z n B F n
86 ixpfn 2 nd z n B F n 2 nd z Fn B
87 85 86 syl φ z X × Y 2 nd z Fn B
88 87 adantlr φ k A z X × Y 2 nd z Fn B
89 10 ad2antrr φ k A z X × Y A B =
90 simplr φ k A z X × Y k A
91 fvun1 1 st z Fn A 2 nd z Fn B A B = k A 1 st z 2 nd z k = 1 st z k
92 83 88 89 90 91 syl112anc φ k A z X × Y 1 st z 2 nd z k = 1 st z k
93 92 mpteq2dva φ k A z X × Y 1 st z 2 nd z k = z X × Y 1 st z k
94 76 adantr φ k A K × t L TopOn X × Y
95 13 mpompt z X × Y 1 st z = x X , y Y x
96 69 adantr φ k A K TopOn X
97 74 adantr φ k A L TopOn Y
98 96 97 cnmpt1st φ k A x X , y Y x K × t L Cn K
99 95 98 eqeltrid φ k A z X × Y 1 st z K × t L Cn K
100 26 adantr φ k A A V
101 27 adantr φ k A F A : A Top
102 simpr φ k A k A
103 1 4 ptpjcn A V F A : A Top k A f X f k K Cn F A k
104 100 101 102 103 syl3anc φ k A f X f k K Cn F A k
105 fvres k A F A k = F k
106 105 adantl φ k A F A k = F k
107 106 oveq2d φ k A K Cn F A k = K Cn F k
108 104 107 eleqtrd φ k A f X f k K Cn F k
109 fveq1 f = 1 st z f k = 1 st z k
110 94 99 96 108 109 cnmpt11 φ k A z X × Y 1 st z k K × t L Cn F k
111 93 110 eqeltrd φ k A z X × Y 1 st z 2 nd z k K × t L Cn F k
112 82 adantlr φ k B z X × Y 1 st z Fn A
113 87 adantlr φ k B z X × Y 2 nd z Fn B
114 10 ad2antrr φ k B z X × Y A B =
115 simplr φ k B z X × Y k B
116 fvun2 1 st z Fn A 2 nd z Fn B A B = k B 1 st z 2 nd z k = 2 nd z k
117 112 113 114 115 116 syl112anc φ k B z X × Y 1 st z 2 nd z k = 2 nd z k
118 117 mpteq2dva φ k B z X × Y 1 st z 2 nd z k = z X × Y 2 nd z k
119 76 adantr φ k B K × t L TopOn X × Y
120 14 mpompt z X × Y 2 nd z = x X , y Y y
121 69 adantr φ k B K TopOn X
122 74 adantr φ k B L TopOn Y
123 121 122 cnmpt2nd φ k B x X , y Y y K × t L Cn L
124 120 123 eqeltrid φ k B z X × Y 2 nd z K × t L Cn L
125 47 adantr φ k B B V
126 48 adantr φ k B F B : B Top
127 simpr φ k B k B
128 2 5 ptpjcn B V F B : B Top k B f Y f k L Cn F B k
129 125 126 127 128 syl3anc φ k B f Y f k L Cn F B k
130 fvres k B F B k = F k
131 130 adantl φ k B F B k = F k
132 131 oveq2d φ k B L Cn F B k = L Cn F k
133 129 132 eleqtrd φ k B f Y f k L Cn F k
134 fveq1 f = 2 nd z f k = 2 nd z k
135 119 124 122 133 134 cnmpt11 φ k B z X × Y 2 nd z k K × t L Cn F k
136 118 135 eqeltrd φ k B z X × Y 1 st z 2 nd z k K × t L Cn F k
137 111 136 jaodan φ k A k B z X × Y 1 st z 2 nd z k K × t L Cn F k
138 80 137 syldan φ k C z X × Y 1 st z 2 nd z k K × t L Cn F k
139 3 76 7 8 138 ptcn φ z X × Y k C 1 st z 2 nd z k K × t L Cn J
140 64 139 eqeltrd φ G K × t L Cn J
141 1 2 3 4 5 6 7 8 9 10 ptuncnv φ G -1 = z J z A z B
142 pttop C V F : C Top 𝑡 F Top
143 7 8 142 syl2anc φ 𝑡 F Top
144 3 143 eqeltrid φ J Top
145 eqid J = J
146 145 toptopon J Top J TopOn J
147 144 146 sylib φ J TopOn J
148 145 3 4 ptrescn C V F : C Top A C z J z A J Cn K
149 7 8 25 148 syl3anc φ z J z A J Cn K
150 145 3 5 ptrescn C V F : C Top B C z J z B J Cn L
151 7 8 46 150 syl3anc φ z J z B J Cn L
152 147 149 151 cnmpt1t φ z J z A z B J Cn K × t L
153 141 152 eqeltrd φ G -1 J Cn K × t L
154 ishmeo G K × t L Homeo J G K × t L Cn J G -1 J Cn K × t L
155 140 153 154 sylanbrc φ G K × t L Homeo J