Step |
Hyp |
Ref |
Expression |
1 |
|
ptunhmeo.x |
|
2 |
|
ptunhmeo.y |
|
3 |
|
ptunhmeo.j |
|
4 |
|
ptunhmeo.k |
|
5 |
|
ptunhmeo.l |
|
6 |
|
ptunhmeo.g |
|
7 |
|
ptunhmeo.c |
|
8 |
|
ptunhmeo.f |
|
9 |
|
ptunhmeo.u |
|
10 |
|
ptunhmeo.i |
|
11 |
|
vex |
|
12 |
|
vex |
|
13 |
11 12
|
op1std |
|
14 |
11 12
|
op2ndd |
|
15 |
13 14
|
uneq12d |
|
16 |
15
|
mpompt |
|
17 |
6 16
|
eqtr4i |
|
18 |
|
xp1st |
|
19 |
18
|
adantl |
|
20 |
|
ixpeq2 |
|
21 |
|
fvres |
|
22 |
21
|
unieqd |
|
23 |
20 22
|
mprg |
|
24 |
|
ssun1 |
|
25 |
24 9
|
sseqtrrid |
|
26 |
7 25
|
ssexd |
|
27 |
8 25
|
fssresd |
|
28 |
4
|
ptuni |
|
29 |
26 27 28
|
syl2anc |
|
30 |
23 29
|
eqtr3id |
|
31 |
30 1
|
eqtr4di |
|
32 |
31
|
adantr |
|
33 |
19 32
|
eleqtrrd |
|
34 |
|
xp2nd |
|
35 |
34
|
adantl |
|
36 |
9
|
eqcomd |
|
37 |
|
uneqdifeq |
|
38 |
25 10 37
|
syl2anc |
|
39 |
36 38
|
mpbid |
|
40 |
39
|
ixpeq1d |
|
41 |
|
ixpeq2 |
|
42 |
|
fvres |
|
43 |
42
|
unieqd |
|
44 |
41 43
|
mprg |
|
45 |
|
ssun2 |
|
46 |
45 9
|
sseqtrrid |
|
47 |
7 46
|
ssexd |
|
48 |
8 46
|
fssresd |
|
49 |
5
|
ptuni |
|
50 |
47 48 49
|
syl2anc |
|
51 |
44 50
|
eqtr3id |
|
52 |
51 2
|
eqtr4di |
|
53 |
40 52
|
eqtrd |
|
54 |
53
|
adantr |
|
55 |
35 54
|
eleqtrrd |
|
56 |
25
|
adantr |
|
57 |
|
undifixp |
|
58 |
33 55 56 57
|
syl3anc |
|
59 |
|
ixpfn |
|
60 |
58 59
|
syl |
|
61 |
|
dffn5 |
|
62 |
60 61
|
sylib |
|
63 |
62
|
mpteq2dva |
|
64 |
17 63
|
eqtrid |
|
65 |
|
pttop |
|
66 |
26 27 65
|
syl2anc |
|
67 |
4 66
|
eqeltrid |
|
68 |
1
|
toptopon |
|
69 |
67 68
|
sylib |
|
70 |
|
pttop |
|
71 |
47 48 70
|
syl2anc |
|
72 |
5 71
|
eqeltrid |
|
73 |
2
|
toptopon |
|
74 |
72 73
|
sylib |
|
75 |
|
txtopon |
|
76 |
69 74 75
|
syl2anc |
|
77 |
9
|
eleq2d |
|
78 |
77
|
biimpa |
|
79 |
|
elun |
|
80 |
78 79
|
sylib |
|
81 |
|
ixpfn |
|
82 |
33 81
|
syl |
|
83 |
82
|
adantlr |
|
84 |
52
|
adantr |
|
85 |
35 84
|
eleqtrrd |
|
86 |
|
ixpfn |
|
87 |
85 86
|
syl |
|
88 |
87
|
adantlr |
|
89 |
10
|
ad2antrr |
|
90 |
|
simplr |
|
91 |
|
fvun1 |
|
92 |
83 88 89 90 91
|
syl112anc |
|
93 |
92
|
mpteq2dva |
|
94 |
76
|
adantr |
|
95 |
13
|
mpompt |
|
96 |
69
|
adantr |
|
97 |
74
|
adantr |
|
98 |
96 97
|
cnmpt1st |
|
99 |
95 98
|
eqeltrid |
|
100 |
26
|
adantr |
|
101 |
27
|
adantr |
|
102 |
|
simpr |
|
103 |
1 4
|
ptpjcn |
|
104 |
100 101 102 103
|
syl3anc |
|
105 |
|
fvres |
|
106 |
105
|
adantl |
|
107 |
106
|
oveq2d |
|
108 |
104 107
|
eleqtrd |
|
109 |
|
fveq1 |
|
110 |
94 99 96 108 109
|
cnmpt11 |
|
111 |
93 110
|
eqeltrd |
|
112 |
82
|
adantlr |
|
113 |
87
|
adantlr |
|
114 |
10
|
ad2antrr |
|
115 |
|
simplr |
|
116 |
|
fvun2 |
|
117 |
112 113 114 115 116
|
syl112anc |
|
118 |
117
|
mpteq2dva |
|
119 |
76
|
adantr |
|
120 |
14
|
mpompt |
|
121 |
69
|
adantr |
|
122 |
74
|
adantr |
|
123 |
121 122
|
cnmpt2nd |
|
124 |
120 123
|
eqeltrid |
|
125 |
47
|
adantr |
|
126 |
48
|
adantr |
|
127 |
|
simpr |
|
128 |
2 5
|
ptpjcn |
|
129 |
125 126 127 128
|
syl3anc |
|
130 |
|
fvres |
|
131 |
130
|
adantl |
|
132 |
131
|
oveq2d |
|
133 |
129 132
|
eleqtrd |
|
134 |
|
fveq1 |
|
135 |
119 124 122 133 134
|
cnmpt11 |
|
136 |
118 135
|
eqeltrd |
|
137 |
111 136
|
jaodan |
|
138 |
80 137
|
syldan |
|
139 |
3 76 7 8 138
|
ptcn |
|
140 |
64 139
|
eqeltrd |
|
141 |
1 2 3 4 5 6 7 8 9 10
|
ptuncnv |
|
142 |
|
pttop |
|
143 |
7 8 142
|
syl2anc |
|
144 |
3 143
|
eqeltrid |
|
145 |
|
eqid |
|
146 |
145
|
toptopon |
|
147 |
144 146
|
sylib |
|
148 |
145 3 4
|
ptrescn |
|
149 |
7 8 25 148
|
syl3anc |
|
150 |
145 3 5
|
ptrescn |
|
151 |
7 8 46 150
|
syl3anc |
|
152 |
147 149 151
|
cnmpt1t |
|
153 |
141 152
|
eqeltrd |
|
154 |
|
ishmeo |
|
155 |
140 153 154
|
sylanbrc |
|