| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.u |
|- U = ( Unit ` Z ) |
| 5 |
|
rpvmasum.b |
|- ( ph -> A e. U ) |
| 6 |
|
rpvmasum.t |
|- T = ( `' L " { A } ) |
| 7 |
1 2 3 4 5 6
|
rpvmasum |
|- ( ph -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) ) e. O(1) ) |
| 8 |
3
|
phicld |
|- ( ph -> ( phi ` N ) e. NN ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( phi ` N ) e. NN ) |
| 10 |
9
|
nncnd |
|- ( ( ph /\ x e. RR+ ) -> ( phi ` N ) e. CC ) |
| 11 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 12 |
|
inss1 |
|- ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) |
| 13 |
|
ssfi |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 ... ( |_ ` x ) ) i^i T ) e. Fin ) |
| 14 |
11 12 13
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i T ) e. Fin ) |
| 15 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) |
| 16 |
15
|
elin1d |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> p e. ( 1 ... ( |_ ` x ) ) ) |
| 17 |
|
elfznn |
|- ( p e. ( 1 ... ( |_ ` x ) ) -> p e. NN ) |
| 18 |
16 17
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> p e. NN ) |
| 19 |
|
vmacl |
|- ( p e. NN -> ( Lam ` p ) e. RR ) |
| 20 |
|
nndivre |
|- ( ( ( Lam ` p ) e. RR /\ p e. NN ) -> ( ( Lam ` p ) / p ) e. RR ) |
| 21 |
19 20
|
mpancom |
|- ( p e. NN -> ( ( Lam ` p ) / p ) e. RR ) |
| 22 |
18 21
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( ( Lam ` p ) / p ) e. RR ) |
| 23 |
14 22
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) e. CC ) |
| 25 |
10 24
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) e. CC ) |
| 26 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 28 |
27
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 29 |
25 28
|
subcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) e. CC ) |
| 30 |
|
inss1 |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( 1 ... ( |_ ` x ) ) |
| 31 |
|
ssfi |
|- ( ( ( 1 ... ( |_ ` x ) ) e. Fin /\ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) e. Fin ) |
| 32 |
11 30 31
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) e. Fin ) |
| 33 |
|
simpr |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) |
| 34 |
33
|
elin1d |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> p e. ( 1 ... ( |_ ` x ) ) ) |
| 35 |
34 17
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> p e. NN ) |
| 36 |
|
nnrp |
|- ( p e. NN -> p e. RR+ ) |
| 37 |
36
|
relogcld |
|- ( p e. NN -> ( log ` p ) e. RR ) |
| 38 |
37 36
|
rerpdivcld |
|- ( p e. NN -> ( ( log ` p ) / p ) e. RR ) |
| 39 |
35 38
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> ( ( log ` p ) / p ) e. RR ) |
| 40 |
32 39
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) e. RR ) |
| 41 |
40
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) e. CC ) |
| 42 |
10 41
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) e. CC ) |
| 43 |
42 28
|
subcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) e. CC ) |
| 44 |
10 24 41
|
subdid |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. ( sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) - sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) ) = ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) ) ) |
| 45 |
19
|
recnd |
|- ( p e. NN -> ( Lam ` p ) e. CC ) |
| 46 |
|
0re |
|- 0 e. RR |
| 47 |
|
ifcl |
|- ( ( ( log ` p ) e. RR /\ 0 e. RR ) -> if ( p e. Prime , ( log ` p ) , 0 ) e. RR ) |
| 48 |
37 46 47
|
sylancl |
|- ( p e. NN -> if ( p e. Prime , ( log ` p ) , 0 ) e. RR ) |
| 49 |
48
|
recnd |
|- ( p e. NN -> if ( p e. Prime , ( log ` p ) , 0 ) e. CC ) |
| 50 |
36
|
rpcnne0d |
|- ( p e. NN -> ( p e. CC /\ p =/= 0 ) ) |
| 51 |
|
divsubdir |
|- ( ( ( Lam ` p ) e. CC /\ if ( p e. Prime , ( log ` p ) , 0 ) e. CC /\ ( p e. CC /\ p =/= 0 ) ) -> ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) = ( ( ( Lam ` p ) / p ) - ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) ) |
| 52 |
45 49 50 51
|
syl3anc |
|- ( p e. NN -> ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) = ( ( ( Lam ` p ) / p ) - ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) ) |
| 53 |
18 52
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) = ( ( ( Lam ` p ) / p ) - ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) ) |
| 54 |
53
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) = sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) / p ) - ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) ) |
| 55 |
21
|
recnd |
|- ( p e. NN -> ( ( Lam ` p ) / p ) e. CC ) |
| 56 |
18 55
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( ( Lam ` p ) / p ) e. CC ) |
| 57 |
48 36
|
rerpdivcld |
|- ( p e. NN -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) e. RR ) |
| 58 |
57
|
recnd |
|- ( p e. NN -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) e. CC ) |
| 59 |
18 58
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) e. CC ) |
| 60 |
14 56 59
|
fsumsub |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) / p ) - ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) = ( sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) - sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) ) |
| 61 |
|
inss2 |
|- ( Prime i^i T ) C_ T |
| 62 |
|
sslin |
|- ( ( Prime i^i T ) C_ T -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( ( 1 ... ( |_ ` x ) ) i^i T ) ) |
| 63 |
61 62
|
mp1i |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( ( 1 ... ( |_ ` x ) ) i^i T ) ) |
| 64 |
35 58
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) e. CC ) |
| 65 |
|
eldif |
|- ( p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) <-> ( p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) /\ -. p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) |
| 66 |
|
incom |
|- ( Prime i^i T ) = ( T i^i Prime ) |
| 67 |
66
|
ineq2i |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) = ( ( 1 ... ( |_ ` x ) ) i^i ( T i^i Prime ) ) |
| 68 |
|
inass |
|- ( ( ( 1 ... ( |_ ` x ) ) i^i T ) i^i Prime ) = ( ( 1 ... ( |_ ` x ) ) i^i ( T i^i Prime ) ) |
| 69 |
67 68
|
eqtr4i |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) = ( ( ( 1 ... ( |_ ` x ) ) i^i T ) i^i Prime ) |
| 70 |
69
|
elin2 |
|- ( p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) <-> ( p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) /\ p e. Prime ) ) |
| 71 |
70
|
simplbi2 |
|- ( p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) -> ( p e. Prime -> p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) |
| 72 |
71
|
con3dimp |
|- ( ( p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) /\ -. p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> -. p e. Prime ) |
| 73 |
65 72
|
sylbi |
|- ( p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> -. p e. Prime ) |
| 74 |
73
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) -> -. p e. Prime ) |
| 75 |
74
|
iffalsed |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) -> if ( p e. Prime , ( log ` p ) , 0 ) = 0 ) |
| 76 |
75
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) = ( 0 / p ) ) |
| 77 |
|
eldifi |
|- ( p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) |
| 78 |
77 18
|
sylan2 |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) -> p e. NN ) |
| 79 |
|
div0 |
|- ( ( p e. CC /\ p =/= 0 ) -> ( 0 / p ) = 0 ) |
| 80 |
50 79
|
syl |
|- ( p e. NN -> ( 0 / p ) = 0 ) |
| 81 |
78 80
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) -> ( 0 / p ) = 0 ) |
| 82 |
76 81
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( ( 1 ... ( |_ ` x ) ) i^i T ) \ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) ) -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) = 0 ) |
| 83 |
63 64 82 14
|
fsumss |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) = sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) |
| 84 |
|
inss2 |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( Prime i^i T ) |
| 85 |
|
inss1 |
|- ( Prime i^i T ) C_ Prime |
| 86 |
84 85
|
sstri |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ Prime |
| 87 |
86 33
|
sselid |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> p e. Prime ) |
| 88 |
87
|
iftrued |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> if ( p e. Prime , ( log ` p ) , 0 ) = ( log ` p ) ) |
| 89 |
88
|
oveq1d |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) = ( ( log ` p ) / p ) ) |
| 90 |
89
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) = sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) |
| 91 |
83 90
|
eqtr3d |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) = sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) |
| 92 |
91
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) - sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( if ( p e. Prime , ( log ` p ) , 0 ) / p ) ) = ( sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) - sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) ) |
| 93 |
54 60 92
|
3eqtrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) = ( sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) - sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) ) |
| 94 |
93
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) = ( ( phi ` N ) x. ( sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) - sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) ) ) |
| 95 |
25 42 28
|
nnncan2d |
|- ( ( ph /\ x e. RR+ ) -> ( ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) - ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) ) = ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) ) ) |
| 96 |
44 94 95
|
3eqtr4d |
|- ( ( ph /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) = ( ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) - ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) ) ) |
| 97 |
96
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) ) = ( x e. RR+ |-> ( ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) - ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) ) ) ) |
| 98 |
19 48
|
resubcld |
|- ( p e. NN -> ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) e. RR ) |
| 99 |
98 36
|
rerpdivcld |
|- ( p e. NN -> ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) e. RR ) |
| 100 |
18 99
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) e. RR ) |
| 101 |
14 100
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) e. RR ) |
| 102 |
101
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) e. CC ) |
| 103 |
|
rpssre |
|- RR+ C_ RR |
| 104 |
8
|
nncnd |
|- ( ph -> ( phi ` N ) e. CC ) |
| 105 |
|
o1const |
|- ( ( RR+ C_ RR /\ ( phi ` N ) e. CC ) -> ( x e. RR+ |-> ( phi ` N ) ) e. O(1) ) |
| 106 |
103 104 105
|
sylancr |
|- ( ph -> ( x e. RR+ |-> ( phi ` N ) ) e. O(1) ) |
| 107 |
103
|
a1i |
|- ( ph -> RR+ C_ RR ) |
| 108 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 109 |
|
2re |
|- 2 e. RR |
| 110 |
109
|
a1i |
|- ( ph -> 2 e. RR ) |
| 111 |
|
breq1 |
|- ( ( log ` p ) = if ( p e. Prime , ( log ` p ) , 0 ) -> ( ( log ` p ) <_ ( Lam ` p ) <-> if ( p e. Prime , ( log ` p ) , 0 ) <_ ( Lam ` p ) ) ) |
| 112 |
|
breq1 |
|- ( 0 = if ( p e. Prime , ( log ` p ) , 0 ) -> ( 0 <_ ( Lam ` p ) <-> if ( p e. Prime , ( log ` p ) , 0 ) <_ ( Lam ` p ) ) ) |
| 113 |
37
|
adantr |
|- ( ( p e. NN /\ p e. Prime ) -> ( log ` p ) e. RR ) |
| 114 |
|
vmaprm |
|- ( p e. Prime -> ( Lam ` p ) = ( log ` p ) ) |
| 115 |
114
|
adantl |
|- ( ( p e. NN /\ p e. Prime ) -> ( Lam ` p ) = ( log ` p ) ) |
| 116 |
115
|
eqcomd |
|- ( ( p e. NN /\ p e. Prime ) -> ( log ` p ) = ( Lam ` p ) ) |
| 117 |
113 116
|
eqled |
|- ( ( p e. NN /\ p e. Prime ) -> ( log ` p ) <_ ( Lam ` p ) ) |
| 118 |
|
vmage0 |
|- ( p e. NN -> 0 <_ ( Lam ` p ) ) |
| 119 |
118
|
adantr |
|- ( ( p e. NN /\ -. p e. Prime ) -> 0 <_ ( Lam ` p ) ) |
| 120 |
111 112 117 119
|
ifbothda |
|- ( p e. NN -> if ( p e. Prime , ( log ` p ) , 0 ) <_ ( Lam ` p ) ) |
| 121 |
19 48
|
subge0d |
|- ( p e. NN -> ( 0 <_ ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) <-> if ( p e. Prime , ( log ` p ) , 0 ) <_ ( Lam ` p ) ) ) |
| 122 |
120 121
|
mpbird |
|- ( p e. NN -> 0 <_ ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) ) |
| 123 |
98 36 122
|
divge0d |
|- ( p e. NN -> 0 <_ ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) |
| 124 |
18 123
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ) -> 0 <_ ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) |
| 125 |
14 100 124
|
fsumge0 |
|- ( ( ph /\ x e. RR+ ) -> 0 <_ sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) |
| 126 |
101 125
|
absidd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) = sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) |
| 127 |
17
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( 1 ... ( |_ ` x ) ) ) -> p e. NN ) |
| 128 |
127 99
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) e. RR ) |
| 129 |
11 128
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) e. RR ) |
| 130 |
109
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> 2 e. RR ) |
| 131 |
127 123
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ p e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) |
| 132 |
12
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 ... ( |_ ` x ) ) i^i T ) C_ ( 1 ... ( |_ ` x ) ) ) |
| 133 |
11 128 131 132
|
fsumless |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) <_ sum_ p e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) |
| 134 |
107
|
sselda |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 135 |
134
|
flcld |
|- ( ( ph /\ x e. RR+ ) -> ( |_ ` x ) e. ZZ ) |
| 136 |
|
rplogsumlem2 |
|- ( ( |_ ` x ) e. ZZ -> sum_ p e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) <_ 2 ) |
| 137 |
135 136
|
syl |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) <_ 2 ) |
| 138 |
101 129 130 133 137
|
letrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) <_ 2 ) |
| 139 |
126 138
|
eqbrtrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) <_ 2 ) |
| 140 |
139
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) <_ 2 ) |
| 141 |
107 102 108 110 140
|
elo1d |
|- ( ph -> ( x e. RR+ |-> sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) e. O(1) ) |
| 142 |
10 102 106 141
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( ( Lam ` p ) - if ( p e. Prime , ( log ` p ) , 0 ) ) / p ) ) ) e. O(1) ) |
| 143 |
97 142
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) - ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) ) ) e. O(1) ) |
| 144 |
29 43 143
|
o1dif |
|- ( ph -> ( ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i T ) ( ( Lam ` p ) / p ) ) - ( log ` x ) ) ) e. O(1) <-> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) ) e. O(1) ) ) |
| 145 |
7 144
|
mpbid |
|- ( ph -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ p e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` p ) / p ) ) - ( log ` x ) ) ) e. O(1) ) |