| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flid |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |
| 2 |
1
|
oveq2d |
|- ( A e. ZZ -> ( 1 ... ( |_ ` A ) ) = ( 1 ... A ) ) |
| 3 |
2
|
sumeq1d |
|- ( A e. ZZ -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) = sum_ n e. ( 1 ... A ) ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) ) |
| 4 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( Lam ` n ) = ( Lam ` ( p ^ k ) ) ) |
| 5 |
|
eleq1 |
|- ( n = ( p ^ k ) -> ( n e. Prime <-> ( p ^ k ) e. Prime ) ) |
| 6 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( log ` n ) = ( log ` ( p ^ k ) ) ) |
| 7 |
5 6
|
ifbieq1d |
|- ( n = ( p ^ k ) -> if ( n e. Prime , ( log ` n ) , 0 ) = if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) |
| 8 |
4 7
|
oveq12d |
|- ( n = ( p ^ k ) -> ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) = ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) ) |
| 9 |
|
id |
|- ( n = ( p ^ k ) -> n = ( p ^ k ) ) |
| 10 |
8 9
|
oveq12d |
|- ( n = ( p ^ k ) -> ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) = ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) ) |
| 11 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
| 12 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
| 13 |
12
|
adantl |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 14 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 15 |
13 14
|
syl |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) |
| 16 |
13
|
nnrpd |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. RR+ ) |
| 17 |
16
|
relogcld |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( log ` n ) e. RR ) |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
|
ifcl |
|- ( ( ( log ` n ) e. RR /\ 0 e. RR ) -> if ( n e. Prime , ( log ` n ) , 0 ) e. RR ) |
| 20 |
17 18 19
|
sylancl |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> if ( n e. Prime , ( log ` n ) , 0 ) e. RR ) |
| 21 |
15 20
|
resubcld |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) e. RR ) |
| 22 |
21 13
|
nndivred |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) e. RR ) |
| 23 |
22
|
recnd |
|- ( ( A e. ZZ /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) e. CC ) |
| 24 |
|
simprr |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( Lam ` n ) = 0 ) |
| 25 |
|
vmaprm |
|- ( n e. Prime -> ( Lam ` n ) = ( log ` n ) ) |
| 26 |
|
prmnn |
|- ( n e. Prime -> n e. NN ) |
| 27 |
26
|
nnred |
|- ( n e. Prime -> n e. RR ) |
| 28 |
|
prmgt1 |
|- ( n e. Prime -> 1 < n ) |
| 29 |
27 28
|
rplogcld |
|- ( n e. Prime -> ( log ` n ) e. RR+ ) |
| 30 |
25 29
|
eqeltrd |
|- ( n e. Prime -> ( Lam ` n ) e. RR+ ) |
| 31 |
30
|
rpne0d |
|- ( n e. Prime -> ( Lam ` n ) =/= 0 ) |
| 32 |
31
|
necon2bi |
|- ( ( Lam ` n ) = 0 -> -. n e. Prime ) |
| 33 |
32
|
ad2antll |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> -. n e. Prime ) |
| 34 |
33
|
iffalsed |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> if ( n e. Prime , ( log ` n ) , 0 ) = 0 ) |
| 35 |
24 34
|
oveq12d |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) = ( 0 - 0 ) ) |
| 36 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 37 |
35 36
|
eqtrdi |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) = 0 ) |
| 38 |
37
|
oveq1d |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) = ( 0 / n ) ) |
| 39 |
12
|
ad2antrl |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> n e. NN ) |
| 40 |
39
|
nnrpd |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> n e. RR+ ) |
| 41 |
40
|
rpcnne0d |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( n e. CC /\ n =/= 0 ) ) |
| 42 |
|
div0 |
|- ( ( n e. CC /\ n =/= 0 ) -> ( 0 / n ) = 0 ) |
| 43 |
41 42
|
syl |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( 0 / n ) = 0 ) |
| 44 |
38 43
|
eqtrd |
|- ( ( A e. ZZ /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) = 0 ) |
| 45 |
10 11 23 44
|
fsumvma2 |
|- ( A e. ZZ -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) ) |
| 46 |
3 45
|
eqtr3d |
|- ( A e. ZZ -> sum_ n e. ( 1 ... A ) ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) ) |
| 47 |
|
fzfid |
|- ( A e. ZZ -> ( 2 ... ( ( abs ` A ) + 1 ) ) e. Fin ) |
| 48 |
|
simpr |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ( 0 [,] A ) i^i Prime ) ) |
| 49 |
48
|
elin2d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. Prime ) |
| 50 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 51 |
49 50
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. NN ) |
| 52 |
51
|
nnred |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. RR ) |
| 53 |
11
|
adantr |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> A e. RR ) |
| 54 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
| 55 |
54
|
abscld |
|- ( A e. ZZ -> ( abs ` A ) e. RR ) |
| 56 |
|
peano2re |
|- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
| 57 |
55 56
|
syl |
|- ( A e. ZZ -> ( ( abs ` A ) + 1 ) e. RR ) |
| 58 |
57
|
adantr |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 59 |
|
elinel1 |
|- ( p e. ( ( 0 [,] A ) i^i Prime ) -> p e. ( 0 [,] A ) ) |
| 60 |
|
elicc2 |
|- ( ( 0 e. RR /\ A e. RR ) -> ( p e. ( 0 [,] A ) <-> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) ) |
| 61 |
18 11 60
|
sylancr |
|- ( A e. ZZ -> ( p e. ( 0 [,] A ) <-> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) ) |
| 62 |
59 61
|
imbitrid |
|- ( A e. ZZ -> ( p e. ( ( 0 [,] A ) i^i Prime ) -> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) ) |
| 63 |
62
|
imp |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p e. RR /\ 0 <_ p /\ p <_ A ) ) |
| 64 |
63
|
simp3d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p <_ A ) |
| 65 |
54
|
adantr |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> A e. CC ) |
| 66 |
65
|
abscld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( abs ` A ) e. RR ) |
| 67 |
53
|
leabsd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> A <_ ( abs ` A ) ) |
| 68 |
66
|
lep1d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( abs ` A ) <_ ( ( abs ` A ) + 1 ) ) |
| 69 |
53 66 58 67 68
|
letrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> A <_ ( ( abs ` A ) + 1 ) ) |
| 70 |
52 53 58 64 69
|
letrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p <_ ( ( abs ` A ) + 1 ) ) |
| 71 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
| 72 |
49 71
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ZZ>= ` 2 ) ) |
| 73 |
|
nn0abscl |
|- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
| 74 |
|
nn0p1nn |
|- ( ( abs ` A ) e. NN0 -> ( ( abs ` A ) + 1 ) e. NN ) |
| 75 |
73 74
|
syl |
|- ( A e. ZZ -> ( ( abs ` A ) + 1 ) e. NN ) |
| 76 |
75
|
nnzd |
|- ( A e. ZZ -> ( ( abs ` A ) + 1 ) e. ZZ ) |
| 77 |
76
|
adantr |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( abs ` A ) + 1 ) e. ZZ ) |
| 78 |
|
elfz5 |
|- ( ( p e. ( ZZ>= ` 2 ) /\ ( ( abs ` A ) + 1 ) e. ZZ ) -> ( p e. ( 2 ... ( ( abs ` A ) + 1 ) ) <-> p <_ ( ( abs ` A ) + 1 ) ) ) |
| 79 |
72 77 78
|
syl2anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p e. ( 2 ... ( ( abs ` A ) + 1 ) ) <-> p <_ ( ( abs ` A ) + 1 ) ) ) |
| 80 |
70 79
|
mpbird |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) |
| 81 |
80
|
ex |
|- ( A e. ZZ -> ( p e. ( ( 0 [,] A ) i^i Prime ) -> p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) ) |
| 82 |
81
|
ssrdv |
|- ( A e. ZZ -> ( ( 0 [,] A ) i^i Prime ) C_ ( 2 ... ( ( abs ` A ) + 1 ) ) ) |
| 83 |
47 82
|
ssfid |
|- ( A e. ZZ -> ( ( 0 [,] A ) i^i Prime ) e. Fin ) |
| 84 |
|
fzfid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) e. Fin ) |
| 85 |
|
simprl |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> p e. ( ( 0 [,] A ) i^i Prime ) ) |
| 86 |
85
|
elin2d |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> p e. Prime ) |
| 87 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. NN ) |
| 88 |
87
|
ad2antll |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> k e. NN ) |
| 89 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 90 |
86 88 89
|
syl2anc |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 91 |
51
|
adantrr |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> p e. NN ) |
| 92 |
91
|
nnrpd |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> p e. RR+ ) |
| 93 |
92
|
relogcld |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( log ` p ) e. RR ) |
| 94 |
90 93
|
eqeltrd |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) e. RR ) |
| 95 |
88
|
nnnn0d |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> k e. NN0 ) |
| 96 |
|
nnexpcl |
|- ( ( p e. NN /\ k e. NN0 ) -> ( p ^ k ) e. NN ) |
| 97 |
91 95 96
|
syl2anc |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. NN ) |
| 98 |
97
|
nnrpd |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( p ^ k ) e. RR+ ) |
| 99 |
98
|
relogcld |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( log ` ( p ^ k ) ) e. RR ) |
| 100 |
|
ifcl |
|- ( ( ( log ` ( p ^ k ) ) e. RR /\ 0 e. RR ) -> if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) e. RR ) |
| 101 |
99 18 100
|
sylancl |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) e. RR ) |
| 102 |
94 101
|
resubcld |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) e. RR ) |
| 103 |
102 97
|
nndivred |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) e. RR ) |
| 104 |
103
|
anassrs |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) e. RR ) |
| 105 |
84 104
|
fsumrecl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) e. RR ) |
| 106 |
83 105
|
fsumrecl |
|- ( A e. ZZ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) e. RR ) |
| 107 |
51
|
nnrpd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. RR+ ) |
| 108 |
107
|
relogcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 109 |
|
uz2m1nn |
|- ( p e. ( ZZ>= ` 2 ) -> ( p - 1 ) e. NN ) |
| 110 |
72 109
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p - 1 ) e. NN ) |
| 111 |
51 110
|
nnmulcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p x. ( p - 1 ) ) e. NN ) |
| 112 |
108 111
|
nndivred |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) / ( p x. ( p - 1 ) ) ) e. RR ) |
| 113 |
83 112
|
fsumrecl |
|- ( A e. ZZ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) e. RR ) |
| 114 |
|
2re |
|- 2 e. RR |
| 115 |
114
|
a1i |
|- ( A e. ZZ -> 2 e. RR ) |
| 116 |
18
|
a1i |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 e. RR ) |
| 117 |
51
|
nngt0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 < p ) |
| 118 |
116 52 53 117 64
|
ltletrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 < A ) |
| 119 |
53 118
|
elrpd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> A e. RR+ ) |
| 120 |
119
|
relogcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` A ) e. RR ) |
| 121 |
|
prmgt1 |
|- ( p e. Prime -> 1 < p ) |
| 122 |
49 121
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 1 < p ) |
| 123 |
52 122
|
rplogcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR+ ) |
| 124 |
120 123
|
rerpdivcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` A ) / ( log ` p ) ) e. RR ) |
| 125 |
123
|
rpcnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 126 |
125
|
mullidd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 x. ( log ` p ) ) = ( log ` p ) ) |
| 127 |
107 119
|
logled |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p <_ A <-> ( log ` p ) <_ ( log ` A ) ) ) |
| 128 |
64 127
|
mpbid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) <_ ( log ` A ) ) |
| 129 |
126 128
|
eqbrtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 x. ( log ` p ) ) <_ ( log ` A ) ) |
| 130 |
|
1re |
|- 1 e. RR |
| 131 |
130
|
a1i |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 1 e. RR ) |
| 132 |
131 120 123
|
lemuldivd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 x. ( log ` p ) ) <_ ( log ` A ) <-> 1 <_ ( ( log ` A ) / ( log ` p ) ) ) ) |
| 133 |
129 132
|
mpbid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 1 <_ ( ( log ` A ) / ( log ` p ) ) ) |
| 134 |
|
flge1nn |
|- ( ( ( ( log ` A ) / ( log ` p ) ) e. RR /\ 1 <_ ( ( log ` A ) / ( log ` p ) ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. NN ) |
| 135 |
124 133 134
|
syl2anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. NN ) |
| 136 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 137 |
135 136
|
eleqtrdi |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. ( ZZ>= ` 1 ) ) |
| 138 |
103
|
recnd |
|- ( ( A e. ZZ /\ ( p e. ( ( 0 [,] A ) i^i Prime ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) ) -> ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) e. CC ) |
| 139 |
138
|
anassrs |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) e. CC ) |
| 140 |
|
oveq2 |
|- ( k = 1 -> ( p ^ k ) = ( p ^ 1 ) ) |
| 141 |
140
|
fveq2d |
|- ( k = 1 -> ( Lam ` ( p ^ k ) ) = ( Lam ` ( p ^ 1 ) ) ) |
| 142 |
140
|
eleq1d |
|- ( k = 1 -> ( ( p ^ k ) e. Prime <-> ( p ^ 1 ) e. Prime ) ) |
| 143 |
140
|
fveq2d |
|- ( k = 1 -> ( log ` ( p ^ k ) ) = ( log ` ( p ^ 1 ) ) ) |
| 144 |
142 143
|
ifbieq1d |
|- ( k = 1 -> if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) = if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) |
| 145 |
141 144
|
oveq12d |
|- ( k = 1 -> ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) = ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) ) |
| 146 |
145 140
|
oveq12d |
|- ( k = 1 -> ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) = ( ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) / ( p ^ 1 ) ) ) |
| 147 |
137 139 146
|
fsum1p |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) = ( ( ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) / ( p ^ 1 ) ) + sum_ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) ) ) |
| 148 |
51
|
nncnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. CC ) |
| 149 |
148
|
exp1d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p ^ 1 ) = p ) |
| 150 |
149
|
fveq2d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( Lam ` ( p ^ 1 ) ) = ( Lam ` p ) ) |
| 151 |
|
vmaprm |
|- ( p e. Prime -> ( Lam ` p ) = ( log ` p ) ) |
| 152 |
49 151
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( Lam ` p ) = ( log ` p ) ) |
| 153 |
150 152
|
eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( Lam ` ( p ^ 1 ) ) = ( log ` p ) ) |
| 154 |
149 49
|
eqeltrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p ^ 1 ) e. Prime ) |
| 155 |
154
|
iftrued |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) = ( log ` ( p ^ 1 ) ) ) |
| 156 |
149
|
fveq2d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` ( p ^ 1 ) ) = ( log ` p ) ) |
| 157 |
155 156
|
eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) = ( log ` p ) ) |
| 158 |
153 157
|
oveq12d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) = ( ( log ` p ) - ( log ` p ) ) ) |
| 159 |
125
|
subidd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) - ( log ` p ) ) = 0 ) |
| 160 |
158 159
|
eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) = 0 ) |
| 161 |
160 149
|
oveq12d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) / ( p ^ 1 ) ) = ( 0 / p ) ) |
| 162 |
107
|
rpcnne0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p e. CC /\ p =/= 0 ) ) |
| 163 |
|
div0 |
|- ( ( p e. CC /\ p =/= 0 ) -> ( 0 / p ) = 0 ) |
| 164 |
162 163
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 0 / p ) = 0 ) |
| 165 |
161 164
|
eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) / ( p ^ 1 ) ) = 0 ) |
| 166 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 167 |
166
|
oveq1i |
|- ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) = ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) |
| 168 |
167
|
a1i |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) = ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) |
| 169 |
|
elfzuz |
|- ( k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 170 |
|
eluz2nn |
|- ( k e. ( ZZ>= ` 2 ) -> k e. NN ) |
| 171 |
169 170
|
syl |
|- ( k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. NN ) |
| 172 |
171 167
|
eleq2s |
|- ( k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. NN ) |
| 173 |
49 172 89
|
syl2an |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 174 |
51
|
adantr |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> p e. NN ) |
| 175 |
|
nnq |
|- ( p e. NN -> p e. QQ ) |
| 176 |
174 175
|
syl |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> p e. QQ ) |
| 177 |
169 167
|
eleq2s |
|- ( k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 178 |
177
|
adantl |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 179 |
|
expnprm |
|- ( ( p e. QQ /\ k e. ( ZZ>= ` 2 ) ) -> -. ( p ^ k ) e. Prime ) |
| 180 |
176 178 179
|
syl2anc |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> -. ( p ^ k ) e. Prime ) |
| 181 |
180
|
iffalsed |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) = 0 ) |
| 182 |
173 181
|
oveq12d |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) = ( ( log ` p ) - 0 ) ) |
| 183 |
125
|
subid1d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) - 0 ) = ( log ` p ) ) |
| 184 |
183
|
adantr |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( log ` p ) - 0 ) = ( log ` p ) ) |
| 185 |
182 184
|
eqtrd |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) = ( log ` p ) ) |
| 186 |
185
|
oveq1d |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) = ( ( log ` p ) / ( p ^ k ) ) ) |
| 187 |
168 186
|
sumeq12dv |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) = sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) ) |
| 188 |
165 187
|
oveq12d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( ( Lam ` ( p ^ 1 ) ) - if ( ( p ^ 1 ) e. Prime , ( log ` ( p ^ 1 ) ) , 0 ) ) / ( p ^ 1 ) ) + sum_ k e. ( ( 1 + 1 ) ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) ) = ( 0 + sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) ) ) |
| 189 |
|
fzfid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) e. Fin ) |
| 190 |
108
|
adantr |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( log ` p ) e. RR ) |
| 191 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 192 |
51 191 96
|
syl2an |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( p ^ k ) e. NN ) |
| 193 |
190 192
|
nndivred |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( ( log ` p ) / ( p ^ k ) ) e. RR ) |
| 194 |
171 193
|
sylan2 |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( log ` p ) / ( p ^ k ) ) e. RR ) |
| 195 |
189 194
|
fsumrecl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) e. RR ) |
| 196 |
195
|
recnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) e. CC ) |
| 197 |
196
|
addlidd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 0 + sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) ) = sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) ) |
| 198 |
147 188 197
|
3eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) = sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) ) |
| 199 |
107
|
rpreccld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 / p ) e. RR+ ) |
| 200 |
124
|
flcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. ZZ ) |
| 201 |
200
|
peano2zd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) e. ZZ ) |
| 202 |
199 201
|
rpexpcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) e. RR+ ) |
| 203 |
202
|
rpge0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 <_ ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) |
| 204 |
51
|
nnrecred |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 / p ) e. RR ) |
| 205 |
204
|
resqcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) ^ 2 ) e. RR ) |
| 206 |
135
|
peano2nnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) e. NN ) |
| 207 |
206
|
nnnn0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) e. NN0 ) |
| 208 |
204 207
|
reexpcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) e. RR ) |
| 209 |
205 208
|
subge02d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 0 <_ ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) <-> ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( 1 / p ) ^ 2 ) ) ) |
| 210 |
203 209
|
mpbid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( 1 / p ) ^ 2 ) ) |
| 211 |
110
|
nnrpd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p - 1 ) e. RR+ ) |
| 212 |
211
|
rpcnne0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) ) |
| 213 |
199
|
rpcnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 / p ) e. CC ) |
| 214 |
|
dmdcan |
|- ( ( ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) /\ ( p e. CC /\ p =/= 0 ) /\ ( 1 / p ) e. CC ) -> ( ( ( p - 1 ) / p ) x. ( ( 1 / p ) / ( p - 1 ) ) ) = ( ( 1 / p ) / p ) ) |
| 215 |
212 162 213 214
|
syl3anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( p - 1 ) / p ) x. ( ( 1 / p ) / ( p - 1 ) ) ) = ( ( 1 / p ) / p ) ) |
| 216 |
131
|
recnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 1 e. CC ) |
| 217 |
|
divsubdir |
|- ( ( p e. CC /\ 1 e. CC /\ ( p e. CC /\ p =/= 0 ) ) -> ( ( p - 1 ) / p ) = ( ( p / p ) - ( 1 / p ) ) ) |
| 218 |
148 216 162 217
|
syl3anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( p - 1 ) / p ) = ( ( p / p ) - ( 1 / p ) ) ) |
| 219 |
|
divid |
|- ( ( p e. CC /\ p =/= 0 ) -> ( p / p ) = 1 ) |
| 220 |
162 219
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p / p ) = 1 ) |
| 221 |
220
|
oveq1d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( p / p ) - ( 1 / p ) ) = ( 1 - ( 1 / p ) ) ) |
| 222 |
218 221
|
eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( p - 1 ) / p ) = ( 1 - ( 1 / p ) ) ) |
| 223 |
|
divdiv1 |
|- ( ( 1 e. CC /\ ( p e. CC /\ p =/= 0 ) /\ ( ( p - 1 ) e. CC /\ ( p - 1 ) =/= 0 ) ) -> ( ( 1 / p ) / ( p - 1 ) ) = ( 1 / ( p x. ( p - 1 ) ) ) ) |
| 224 |
216 162 212 223
|
syl3anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) / ( p - 1 ) ) = ( 1 / ( p x. ( p - 1 ) ) ) ) |
| 225 |
222 224
|
oveq12d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( p - 1 ) / p ) x. ( ( 1 / p ) / ( p - 1 ) ) ) = ( ( 1 - ( 1 / p ) ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) |
| 226 |
51
|
nnne0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p =/= 0 ) |
| 227 |
213 148 226
|
divrecd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) / p ) = ( ( 1 / p ) x. ( 1 / p ) ) ) |
| 228 |
213
|
sqvald |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) ^ 2 ) = ( ( 1 / p ) x. ( 1 / p ) ) ) |
| 229 |
227 228
|
eqtr4d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) / p ) = ( ( 1 / p ) ^ 2 ) ) |
| 230 |
215 225 229
|
3eqtr3d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 - ( 1 / p ) ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) = ( ( 1 / p ) ^ 2 ) ) |
| 231 |
210 230
|
breqtrrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( 1 - ( 1 / p ) ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) |
| 232 |
205 208
|
resubcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) e. RR ) |
| 233 |
111
|
nnrecred |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 / ( p x. ( p - 1 ) ) ) e. RR ) |
| 234 |
|
resubcl |
|- ( ( 1 e. RR /\ ( 1 / p ) e. RR ) -> ( 1 - ( 1 / p ) ) e. RR ) |
| 235 |
130 204 234
|
sylancr |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 - ( 1 / p ) ) e. RR ) |
| 236 |
|
recgt1 |
|- ( ( p e. RR /\ 0 < p ) -> ( 1 < p <-> ( 1 / p ) < 1 ) ) |
| 237 |
52 117 236
|
syl2anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 < p <-> ( 1 / p ) < 1 ) ) |
| 238 |
122 237
|
mpbid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 / p ) < 1 ) |
| 239 |
|
posdif |
|- ( ( ( 1 / p ) e. RR /\ 1 e. RR ) -> ( ( 1 / p ) < 1 <-> 0 < ( 1 - ( 1 / p ) ) ) ) |
| 240 |
204 130 239
|
sylancl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( 1 / p ) < 1 <-> 0 < ( 1 - ( 1 / p ) ) ) ) |
| 241 |
238 240
|
mpbid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 < ( 1 - ( 1 / p ) ) ) |
| 242 |
|
ledivmul |
|- ( ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) e. RR /\ ( 1 / ( p x. ( p - 1 ) ) ) e. RR /\ ( ( 1 - ( 1 / p ) ) e. RR /\ 0 < ( 1 - ( 1 / p ) ) ) ) -> ( ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) <_ ( 1 / ( p x. ( p - 1 ) ) ) <-> ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( 1 - ( 1 / p ) ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) ) |
| 243 |
232 233 235 241 242
|
syl112anc |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) <_ ( 1 / ( p x. ( p - 1 ) ) ) <-> ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) <_ ( ( 1 - ( 1 / p ) ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) ) |
| 244 |
231 243
|
mpbird |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) <_ ( 1 / ( p x. ( p - 1 ) ) ) ) |
| 245 |
235 241
|
elrpd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 - ( 1 / p ) ) e. RR+ ) |
| 246 |
232 245
|
rerpdivcld |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) e. RR ) |
| 247 |
246 233 123
|
lemul2d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) <_ ( 1 / ( p x. ( p - 1 ) ) ) <-> ( ( log ` p ) x. ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) <_ ( ( log ` p ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) ) |
| 248 |
244 247
|
mpbid |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) x. ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) <_ ( ( log ` p ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) |
| 249 |
125
|
adantr |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( log ` p ) e. CC ) |
| 250 |
192
|
nncnd |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( p ^ k ) e. CC ) |
| 251 |
192
|
nnne0d |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( p ^ k ) =/= 0 ) |
| 252 |
249 250 251
|
divrecd |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( ( log ` p ) / ( p ^ k ) ) = ( ( log ` p ) x. ( 1 / ( p ^ k ) ) ) ) |
| 253 |
148
|
adantr |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> p e. CC ) |
| 254 |
51
|
adantr |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> p e. NN ) |
| 255 |
254
|
nnne0d |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> p =/= 0 ) |
| 256 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 257 |
256
|
adantl |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> k e. ZZ ) |
| 258 |
253 255 257
|
exprecd |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( ( 1 / p ) ^ k ) = ( 1 / ( p ^ k ) ) ) |
| 259 |
258
|
oveq2d |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) = ( ( log ` p ) x. ( 1 / ( p ^ k ) ) ) ) |
| 260 |
252 259
|
eqtr4d |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. NN ) -> ( ( log ` p ) / ( p ^ k ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 261 |
171 260
|
sylan2 |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( log ` p ) / ( p ^ k ) ) = ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 262 |
261
|
sumeq2dv |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) = sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 263 |
171
|
nnnn0d |
|- ( k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. NN0 ) |
| 264 |
|
expcl |
|- ( ( ( 1 / p ) e. CC /\ k e. NN0 ) -> ( ( 1 / p ) ^ k ) e. CC ) |
| 265 |
213 263 264
|
syl2an |
|- ( ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( ( 1 / p ) ^ k ) e. CC ) |
| 266 |
189 125 265
|
fsummulc2 |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) x. sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) ) = sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) x. ( ( 1 / p ) ^ k ) ) ) |
| 267 |
|
fzval3 |
|- ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. ZZ -> ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) = ( 2 ..^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) |
| 268 |
200 267
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) = ( 2 ..^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) |
| 269 |
268
|
sumeq1d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) = sum_ k e. ( 2 ..^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ( ( 1 / p ) ^ k ) ) |
| 270 |
204 238
|
ltned |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 / p ) =/= 1 ) |
| 271 |
|
2nn0 |
|- 2 e. NN0 |
| 272 |
271
|
a1i |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 2 e. NN0 ) |
| 273 |
|
eluzp1p1 |
|- ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. ( ZZ>= ` 1 ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 274 |
137 273
|
syl |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) |
| 275 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 276 |
275
|
fveq2i |
|- ( ZZ>= ` 2 ) = ( ZZ>= ` ( 1 + 1 ) ) |
| 277 |
274 276
|
eleqtrrdi |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) e. ( ZZ>= ` 2 ) ) |
| 278 |
213 270 272 277
|
geoserg |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ..^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ( ( 1 / p ) ^ k ) = ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) |
| 279 |
269 278
|
eqtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) = ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) |
| 280 |
279
|
oveq2d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) x. sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( 1 / p ) ^ k ) ) = ( ( log ` p ) x. ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) ) |
| 281 |
262 266 280
|
3eqtr2d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) = ( ( log ` p ) x. ( ( ( ( 1 / p ) ^ 2 ) - ( ( 1 / p ) ^ ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) + 1 ) ) ) / ( 1 - ( 1 / p ) ) ) ) ) |
| 282 |
111
|
nncnd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p x. ( p - 1 ) ) e. CC ) |
| 283 |
111
|
nnne0d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p x. ( p - 1 ) ) =/= 0 ) |
| 284 |
125 282 283
|
divrecd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` p ) / ( p x. ( p - 1 ) ) ) = ( ( log ` p ) x. ( 1 / ( p x. ( p - 1 ) ) ) ) ) |
| 285 |
248 281 284
|
3brtr4d |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 2 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( log ` p ) / ( p ^ k ) ) <_ ( ( log ` p ) / ( p x. ( p - 1 ) ) ) ) |
| 286 |
198 285
|
eqbrtrd |
|- ( ( A e. ZZ /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) <_ ( ( log ` p ) / ( p x. ( p - 1 ) ) ) ) |
| 287 |
83 105 112 286
|
fsumle |
|- ( A e. ZZ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) <_ sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) ) |
| 288 |
|
elfzuz |
|- ( p e. ( 2 ... ( ( abs ` A ) + 1 ) ) -> p e. ( ZZ>= ` 2 ) ) |
| 289 |
|
eluz2nn |
|- ( p e. ( ZZ>= ` 2 ) -> p e. NN ) |
| 290 |
288 289
|
syl |
|- ( p e. ( 2 ... ( ( abs ` A ) + 1 ) ) -> p e. NN ) |
| 291 |
290
|
adantl |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> p e. NN ) |
| 292 |
291
|
nnred |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> p e. RR ) |
| 293 |
288
|
adantl |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> p e. ( ZZ>= ` 2 ) ) |
| 294 |
|
eluz2gt1 |
|- ( p e. ( ZZ>= ` 2 ) -> 1 < p ) |
| 295 |
293 294
|
syl |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> 1 < p ) |
| 296 |
292 295
|
rplogcld |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> ( log ` p ) e. RR+ ) |
| 297 |
293 109
|
syl |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> ( p - 1 ) e. NN ) |
| 298 |
291 297
|
nnmulcld |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> ( p x. ( p - 1 ) ) e. NN ) |
| 299 |
298
|
nnrpd |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> ( p x. ( p - 1 ) ) e. RR+ ) |
| 300 |
296 299
|
rpdivcld |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> ( ( log ` p ) / ( p x. ( p - 1 ) ) ) e. RR+ ) |
| 301 |
300
|
rpred |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> ( ( log ` p ) / ( p x. ( p - 1 ) ) ) e. RR ) |
| 302 |
47 301
|
fsumrecl |
|- ( A e. ZZ -> sum_ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) e. RR ) |
| 303 |
300
|
rpge0d |
|- ( ( A e. ZZ /\ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ) -> 0 <_ ( ( log ` p ) / ( p x. ( p - 1 ) ) ) ) |
| 304 |
47 301 303 82
|
fsumless |
|- ( A e. ZZ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) <_ sum_ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) ) |
| 305 |
|
rplogsumlem1 |
|- ( ( ( abs ` A ) + 1 ) e. NN -> sum_ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) <_ 2 ) |
| 306 |
75 305
|
syl |
|- ( A e. ZZ -> sum_ p e. ( 2 ... ( ( abs ` A ) + 1 ) ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) <_ 2 ) |
| 307 |
113 302 115 304 306
|
letrd |
|- ( A e. ZZ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( ( log ` p ) / ( p x. ( p - 1 ) ) ) <_ 2 ) |
| 308 |
106 113 115 287 307
|
letrd |
|- ( A e. ZZ -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( ( ( Lam ` ( p ^ k ) ) - if ( ( p ^ k ) e. Prime , ( log ` ( p ^ k ) ) , 0 ) ) / ( p ^ k ) ) <_ 2 ) |
| 309 |
46 308
|
eqbrtrd |
|- ( A e. ZZ -> sum_ n e. ( 1 ... A ) ( ( ( Lam ` n ) - if ( n e. Prime , ( log ` n ) , 0 ) ) / n ) <_ 2 ) |