| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flid |
|
| 2 |
1
|
oveq2d |
|
| 3 |
2
|
sumeq1d |
|
| 4 |
|
fveq2 |
|
| 5 |
|
eleq1 |
|
| 6 |
|
fveq2 |
|
| 7 |
5 6
|
ifbieq1d |
|
| 8 |
4 7
|
oveq12d |
|
| 9 |
|
id |
|
| 10 |
8 9
|
oveq12d |
|
| 11 |
|
zre |
|
| 12 |
|
elfznn |
|
| 13 |
12
|
adantl |
|
| 14 |
|
vmacl |
|
| 15 |
13 14
|
syl |
|
| 16 |
13
|
nnrpd |
|
| 17 |
16
|
relogcld |
|
| 18 |
|
0re |
|
| 19 |
|
ifcl |
|
| 20 |
17 18 19
|
sylancl |
|
| 21 |
15 20
|
resubcld |
|
| 22 |
21 13
|
nndivred |
|
| 23 |
22
|
recnd |
|
| 24 |
|
simprr |
|
| 25 |
|
vmaprm |
|
| 26 |
|
prmnn |
|
| 27 |
26
|
nnred |
|
| 28 |
|
prmgt1 |
|
| 29 |
27 28
|
rplogcld |
|
| 30 |
25 29
|
eqeltrd |
|
| 31 |
30
|
rpne0d |
|
| 32 |
31
|
necon2bi |
|
| 33 |
32
|
ad2antll |
|
| 34 |
33
|
iffalsed |
|
| 35 |
24 34
|
oveq12d |
|
| 36 |
|
0m0e0 |
|
| 37 |
35 36
|
eqtrdi |
|
| 38 |
37
|
oveq1d |
|
| 39 |
12
|
ad2antrl |
|
| 40 |
39
|
nnrpd |
|
| 41 |
40
|
rpcnne0d |
|
| 42 |
|
div0 |
|
| 43 |
41 42
|
syl |
|
| 44 |
38 43
|
eqtrd |
|
| 45 |
10 11 23 44
|
fsumvma2 |
|
| 46 |
3 45
|
eqtr3d |
|
| 47 |
|
fzfid |
|
| 48 |
|
simpr |
|
| 49 |
48
|
elin2d |
|
| 50 |
|
prmnn |
|
| 51 |
49 50
|
syl |
|
| 52 |
51
|
nnred |
|
| 53 |
11
|
adantr |
|
| 54 |
|
zcn |
|
| 55 |
54
|
abscld |
|
| 56 |
|
peano2re |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
adantr |
|
| 59 |
|
elinel1 |
|
| 60 |
|
elicc2 |
|
| 61 |
18 11 60
|
sylancr |
|
| 62 |
59 61
|
imbitrid |
|
| 63 |
62
|
imp |
|
| 64 |
63
|
simp3d |
|
| 65 |
54
|
adantr |
|
| 66 |
65
|
abscld |
|
| 67 |
53
|
leabsd |
|
| 68 |
66
|
lep1d |
|
| 69 |
53 66 58 67 68
|
letrd |
|
| 70 |
52 53 58 64 69
|
letrd |
|
| 71 |
|
prmuz2 |
|
| 72 |
49 71
|
syl |
|
| 73 |
|
nn0abscl |
|
| 74 |
|
nn0p1nn |
|
| 75 |
73 74
|
syl |
|
| 76 |
75
|
nnzd |
|
| 77 |
76
|
adantr |
|
| 78 |
|
elfz5 |
|
| 79 |
72 77 78
|
syl2anc |
|
| 80 |
70 79
|
mpbird |
|
| 81 |
80
|
ex |
|
| 82 |
81
|
ssrdv |
|
| 83 |
47 82
|
ssfid |
|
| 84 |
|
fzfid |
|
| 85 |
|
simprl |
|
| 86 |
85
|
elin2d |
|
| 87 |
|
elfznn |
|
| 88 |
87
|
ad2antll |
|
| 89 |
|
vmappw |
|
| 90 |
86 88 89
|
syl2anc |
|
| 91 |
51
|
adantrr |
|
| 92 |
91
|
nnrpd |
|
| 93 |
92
|
relogcld |
|
| 94 |
90 93
|
eqeltrd |
|
| 95 |
88
|
nnnn0d |
|
| 96 |
|
nnexpcl |
|
| 97 |
91 95 96
|
syl2anc |
|
| 98 |
97
|
nnrpd |
|
| 99 |
98
|
relogcld |
|
| 100 |
|
ifcl |
|
| 101 |
99 18 100
|
sylancl |
|
| 102 |
94 101
|
resubcld |
|
| 103 |
102 97
|
nndivred |
|
| 104 |
103
|
anassrs |
|
| 105 |
84 104
|
fsumrecl |
|
| 106 |
83 105
|
fsumrecl |
|
| 107 |
51
|
nnrpd |
|
| 108 |
107
|
relogcld |
|
| 109 |
|
uz2m1nn |
|
| 110 |
72 109
|
syl |
|
| 111 |
51 110
|
nnmulcld |
|
| 112 |
108 111
|
nndivred |
|
| 113 |
83 112
|
fsumrecl |
|
| 114 |
|
2re |
|
| 115 |
114
|
a1i |
|
| 116 |
18
|
a1i |
|
| 117 |
51
|
nngt0d |
|
| 118 |
116 52 53 117 64
|
ltletrd |
|
| 119 |
53 118
|
elrpd |
|
| 120 |
119
|
relogcld |
|
| 121 |
|
prmgt1 |
|
| 122 |
49 121
|
syl |
|
| 123 |
52 122
|
rplogcld |
|
| 124 |
120 123
|
rerpdivcld |
|
| 125 |
123
|
rpcnd |
|
| 126 |
125
|
mullidd |
|
| 127 |
107 119
|
logled |
|
| 128 |
64 127
|
mpbid |
|
| 129 |
126 128
|
eqbrtrd |
|
| 130 |
|
1re |
|
| 131 |
130
|
a1i |
|
| 132 |
131 120 123
|
lemuldivd |
|
| 133 |
129 132
|
mpbid |
|
| 134 |
|
flge1nn |
|
| 135 |
124 133 134
|
syl2anc |
|
| 136 |
|
nnuz |
|
| 137 |
135 136
|
eleqtrdi |
|
| 138 |
103
|
recnd |
|
| 139 |
138
|
anassrs |
|
| 140 |
|
oveq2 |
|
| 141 |
140
|
fveq2d |
|
| 142 |
140
|
eleq1d |
|
| 143 |
140
|
fveq2d |
|
| 144 |
142 143
|
ifbieq1d |
|
| 145 |
141 144
|
oveq12d |
|
| 146 |
145 140
|
oveq12d |
|
| 147 |
137 139 146
|
fsum1p |
|
| 148 |
51
|
nncnd |
|
| 149 |
148
|
exp1d |
|
| 150 |
149
|
fveq2d |
|
| 151 |
|
vmaprm |
|
| 152 |
49 151
|
syl |
|
| 153 |
150 152
|
eqtrd |
|
| 154 |
149 49
|
eqeltrd |
|
| 155 |
154
|
iftrued |
|
| 156 |
149
|
fveq2d |
|
| 157 |
155 156
|
eqtrd |
|
| 158 |
153 157
|
oveq12d |
|
| 159 |
125
|
subidd |
|
| 160 |
158 159
|
eqtrd |
|
| 161 |
160 149
|
oveq12d |
|
| 162 |
107
|
rpcnne0d |
|
| 163 |
|
div0 |
|
| 164 |
162 163
|
syl |
|
| 165 |
161 164
|
eqtrd |
|
| 166 |
|
1p1e2 |
|
| 167 |
166
|
oveq1i |
|
| 168 |
167
|
a1i |
|
| 169 |
|
elfzuz |
|
| 170 |
|
eluz2nn |
|
| 171 |
169 170
|
syl |
|
| 172 |
171 167
|
eleq2s |
|
| 173 |
49 172 89
|
syl2an |
|
| 174 |
51
|
adantr |
|
| 175 |
|
nnq |
|
| 176 |
174 175
|
syl |
|
| 177 |
169 167
|
eleq2s |
|
| 178 |
177
|
adantl |
|
| 179 |
|
expnprm |
|
| 180 |
176 178 179
|
syl2anc |
|
| 181 |
180
|
iffalsed |
|
| 182 |
173 181
|
oveq12d |
|
| 183 |
125
|
subid1d |
|
| 184 |
183
|
adantr |
|
| 185 |
182 184
|
eqtrd |
|
| 186 |
185
|
oveq1d |
|
| 187 |
168 186
|
sumeq12dv |
|
| 188 |
165 187
|
oveq12d |
|
| 189 |
|
fzfid |
|
| 190 |
108
|
adantr |
|
| 191 |
|
nnnn0 |
|
| 192 |
51 191 96
|
syl2an |
|
| 193 |
190 192
|
nndivred |
|
| 194 |
171 193
|
sylan2 |
|
| 195 |
189 194
|
fsumrecl |
|
| 196 |
195
|
recnd |
|
| 197 |
196
|
addlidd |
|
| 198 |
147 188 197
|
3eqtrd |
|
| 199 |
107
|
rpreccld |
|
| 200 |
124
|
flcld |
|
| 201 |
200
|
peano2zd |
|
| 202 |
199 201
|
rpexpcld |
|
| 203 |
202
|
rpge0d |
|
| 204 |
51
|
nnrecred |
|
| 205 |
204
|
resqcld |
|
| 206 |
135
|
peano2nnd |
|
| 207 |
206
|
nnnn0d |
|
| 208 |
204 207
|
reexpcld |
|
| 209 |
205 208
|
subge02d |
|
| 210 |
203 209
|
mpbid |
|
| 211 |
110
|
nnrpd |
|
| 212 |
211
|
rpcnne0d |
|
| 213 |
199
|
rpcnd |
|
| 214 |
|
dmdcan |
|
| 215 |
212 162 213 214
|
syl3anc |
|
| 216 |
131
|
recnd |
|
| 217 |
|
divsubdir |
|
| 218 |
148 216 162 217
|
syl3anc |
|
| 219 |
|
divid |
|
| 220 |
162 219
|
syl |
|
| 221 |
220
|
oveq1d |
|
| 222 |
218 221
|
eqtrd |
|
| 223 |
|
divdiv1 |
|
| 224 |
216 162 212 223
|
syl3anc |
|
| 225 |
222 224
|
oveq12d |
|
| 226 |
51
|
nnne0d |
|
| 227 |
213 148 226
|
divrecd |
|
| 228 |
213
|
sqvald |
|
| 229 |
227 228
|
eqtr4d |
|
| 230 |
215 225 229
|
3eqtr3d |
|
| 231 |
210 230
|
breqtrrd |
|
| 232 |
205 208
|
resubcld |
|
| 233 |
111
|
nnrecred |
|
| 234 |
|
resubcl |
|
| 235 |
130 204 234
|
sylancr |
|
| 236 |
|
recgt1 |
|
| 237 |
52 117 236
|
syl2anc |
|
| 238 |
122 237
|
mpbid |
|
| 239 |
|
posdif |
|
| 240 |
204 130 239
|
sylancl |
|
| 241 |
238 240
|
mpbid |
|
| 242 |
|
ledivmul |
|
| 243 |
232 233 235 241 242
|
syl112anc |
|
| 244 |
231 243
|
mpbird |
|
| 245 |
235 241
|
elrpd |
|
| 246 |
232 245
|
rerpdivcld |
|
| 247 |
246 233 123
|
lemul2d |
|
| 248 |
244 247
|
mpbid |
|
| 249 |
125
|
adantr |
|
| 250 |
192
|
nncnd |
|
| 251 |
192
|
nnne0d |
|
| 252 |
249 250 251
|
divrecd |
|
| 253 |
148
|
adantr |
|
| 254 |
51
|
adantr |
|
| 255 |
254
|
nnne0d |
|
| 256 |
|
nnz |
|
| 257 |
256
|
adantl |
|
| 258 |
253 255 257
|
exprecd |
|
| 259 |
258
|
oveq2d |
|
| 260 |
252 259
|
eqtr4d |
|
| 261 |
171 260
|
sylan2 |
|
| 262 |
261
|
sumeq2dv |
|
| 263 |
171
|
nnnn0d |
|
| 264 |
|
expcl |
|
| 265 |
213 263 264
|
syl2an |
|
| 266 |
189 125 265
|
fsummulc2 |
|
| 267 |
|
fzval3 |
|
| 268 |
200 267
|
syl |
|
| 269 |
268
|
sumeq1d |
|
| 270 |
204 238
|
ltned |
|
| 271 |
|
2nn0 |
|
| 272 |
271
|
a1i |
|
| 273 |
|
eluzp1p1 |
|
| 274 |
137 273
|
syl |
|
| 275 |
|
df-2 |
|
| 276 |
275
|
fveq2i |
|
| 277 |
274 276
|
eleqtrrdi |
|
| 278 |
213 270 272 277
|
geoserg |
|
| 279 |
269 278
|
eqtrd |
|
| 280 |
279
|
oveq2d |
|
| 281 |
262 266 280
|
3eqtr2d |
|
| 282 |
111
|
nncnd |
|
| 283 |
111
|
nnne0d |
|
| 284 |
125 282 283
|
divrecd |
|
| 285 |
248 281 284
|
3brtr4d |
|
| 286 |
198 285
|
eqbrtrd |
|
| 287 |
83 105 112 286
|
fsumle |
|
| 288 |
|
elfzuz |
|
| 289 |
|
eluz2nn |
|
| 290 |
288 289
|
syl |
|
| 291 |
290
|
adantl |
|
| 292 |
291
|
nnred |
|
| 293 |
288
|
adantl |
|
| 294 |
|
eluz2gt1 |
|
| 295 |
293 294
|
syl |
|
| 296 |
292 295
|
rplogcld |
|
| 297 |
293 109
|
syl |
|
| 298 |
291 297
|
nnmulcld |
|
| 299 |
298
|
nnrpd |
|
| 300 |
296 299
|
rpdivcld |
|
| 301 |
300
|
rpred |
|
| 302 |
47 301
|
fsumrecl |
|
| 303 |
300
|
rpge0d |
|
| 304 |
47 301 303 82
|
fsumless |
|
| 305 |
|
rplogsumlem1 |
|
| 306 |
75 305
|
syl |
|
| 307 |
113 302 115 304 306
|
letrd |
|
| 308 |
106 113 115 287 307
|
letrd |
|
| 309 |
46 308
|
eqbrtrd |
|