| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℤ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... 𝐴 ) ) |
| 3 |
2
|
sumeq1d |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) = Σ 𝑛 ∈ ( 1 ... 𝐴 ) ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) ) |
| 4 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
| 5 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( 𝑛 ∈ ℙ ↔ ( 𝑝 ↑ 𝑘 ) ∈ ℙ ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( log ‘ 𝑛 ) = ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
| 7 |
5 6
|
ifbieq1d |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) = if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) |
| 8 |
4 7
|
oveq12d |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) = ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) ) |
| 9 |
|
id |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → 𝑛 = ( 𝑝 ↑ 𝑘 ) ) |
| 10 |
8 9
|
oveq12d |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) = ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 11 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
| 12 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 14 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 16 |
13
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 17 |
16
|
relogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 18 |
|
0re |
⊢ 0 ∈ ℝ |
| 19 |
|
ifcl |
⊢ ( ( ( log ‘ 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ∈ ℝ ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ∈ ℝ ) |
| 21 |
15 20
|
resubcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) ∈ ℝ ) |
| 22 |
21 13
|
nndivred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) ∈ ℝ ) |
| 23 |
22
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) ∈ ℂ ) |
| 24 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( Λ ‘ 𝑛 ) = 0 ) |
| 25 |
|
vmaprm |
⊢ ( 𝑛 ∈ ℙ → ( Λ ‘ 𝑛 ) = ( log ‘ 𝑛 ) ) |
| 26 |
|
prmnn |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℕ ) |
| 27 |
26
|
nnred |
⊢ ( 𝑛 ∈ ℙ → 𝑛 ∈ ℝ ) |
| 28 |
|
prmgt1 |
⊢ ( 𝑛 ∈ ℙ → 1 < 𝑛 ) |
| 29 |
27 28
|
rplogcld |
⊢ ( 𝑛 ∈ ℙ → ( log ‘ 𝑛 ) ∈ ℝ+ ) |
| 30 |
25 29
|
eqeltrd |
⊢ ( 𝑛 ∈ ℙ → ( Λ ‘ 𝑛 ) ∈ ℝ+ ) |
| 31 |
30
|
rpne0d |
⊢ ( 𝑛 ∈ ℙ → ( Λ ‘ 𝑛 ) ≠ 0 ) |
| 32 |
31
|
necon2bi |
⊢ ( ( Λ ‘ 𝑛 ) = 0 → ¬ 𝑛 ∈ ℙ ) |
| 33 |
32
|
ad2antll |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ¬ 𝑛 ∈ ℙ ) |
| 34 |
33
|
iffalsed |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) = 0 ) |
| 35 |
24 34
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) = ( 0 − 0 ) ) |
| 36 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 37 |
35 36
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) = 0 ) |
| 38 |
37
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) = ( 0 / 𝑛 ) ) |
| 39 |
12
|
ad2antrl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → 𝑛 ∈ ℕ ) |
| 40 |
39
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → 𝑛 ∈ ℝ+ ) |
| 41 |
40
|
rpcnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
| 42 |
|
div0 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) → ( 0 / 𝑛 ) = 0 ) |
| 43 |
41 42
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( 0 / 𝑛 ) = 0 ) |
| 44 |
38 43
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) = 0 ) |
| 45 |
10 11 23 44
|
fsumvma2 |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 46 |
3 45
|
eqtr3d |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... 𝐴 ) ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 47 |
|
fzfid |
⊢ ( 𝐴 ∈ ℤ → ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ∈ Fin ) |
| 48 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 49 |
48
|
elin2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 50 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 52 |
51
|
nnred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
| 53 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ ) |
| 54 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
| 55 |
54
|
abscld |
⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 56 |
|
peano2re |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 57 |
55 56
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 59 |
|
elinel1 |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ( 0 [,] 𝐴 ) ) |
| 60 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 61 |
18 11 60
|
sylancr |
⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 62 |
59 61
|
imbitrid |
⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 63 |
62
|
imp |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) |
| 64 |
63
|
simp3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ≤ 𝐴 ) |
| 65 |
54
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℂ ) |
| 66 |
65
|
abscld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 67 |
53
|
leabsd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 68 |
66
|
lep1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( abs ‘ 𝐴 ) ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 69 |
53 66 58 67 68
|
letrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 70 |
52 53 58 64 69
|
letrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) |
| 71 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 72 |
49 71
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 73 |
|
nn0abscl |
⊢ ( 𝐴 ∈ ℤ → ( abs ‘ 𝐴 ) ∈ ℕ0 ) |
| 74 |
|
nn0p1nn |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ0 → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
| 75 |
73 74
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℕ ) |
| 76 |
75
|
nnzd |
⊢ ( 𝐴 ∈ ℤ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℤ ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℤ ) |
| 78 |
|
elfz5 |
⊢ ( ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℤ ) → ( 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ↔ 𝑝 ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 79 |
72 77 78
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ↔ 𝑝 ≤ ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 80 |
70 79
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 81 |
80
|
ex |
⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) ) |
| 82 |
81
|
ssrdv |
⊢ ( 𝐴 ∈ ℤ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) |
| 83 |
47 82
|
ssfid |
⊢ ( 𝐴 ∈ ℤ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 84 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ Fin ) |
| 85 |
|
simprl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 86 |
85
|
elin2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → 𝑝 ∈ ℙ ) |
| 87 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 88 |
87
|
ad2antll |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → 𝑘 ∈ ℕ ) |
| 89 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 90 |
86 88 89
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 91 |
51
|
adantrr |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → 𝑝 ∈ ℕ ) |
| 92 |
91
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → 𝑝 ∈ ℝ+ ) |
| 93 |
92
|
relogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 94 |
90 93
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 95 |
88
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 96 |
|
nnexpcl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 97 |
91 95 96
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 98 |
97
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ+ ) |
| 99 |
98
|
relogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 100 |
|
ifcl |
⊢ ( ( ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ∈ ℝ ) |
| 101 |
99 18 100
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ∈ ℝ ) |
| 102 |
94 101
|
resubcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) ∈ ℝ ) |
| 103 |
102 97
|
nndivred |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 104 |
103
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 105 |
84 104
|
fsumrecl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 106 |
83 105
|
fsumrecl |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 107 |
51
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 108 |
107
|
relogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 109 |
|
uz2m1nn |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑝 − 1 ) ∈ ℕ ) |
| 110 |
72 109
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 − 1 ) ∈ ℕ ) |
| 111 |
51 110
|
nnmulcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 · ( 𝑝 − 1 ) ) ∈ ℕ ) |
| 112 |
108 111
|
nndivred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ ) |
| 113 |
83 112
|
fsumrecl |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ ) |
| 114 |
|
2re |
⊢ 2 ∈ ℝ |
| 115 |
114
|
a1i |
⊢ ( 𝐴 ∈ ℤ → 2 ∈ ℝ ) |
| 116 |
18
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 ∈ ℝ ) |
| 117 |
51
|
nngt0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 < 𝑝 ) |
| 118 |
116 52 53 117 64
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 < 𝐴 ) |
| 119 |
53 118
|
elrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ+ ) |
| 120 |
119
|
relogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 121 |
|
prmgt1 |
⊢ ( 𝑝 ∈ ℙ → 1 < 𝑝 ) |
| 122 |
49 121
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 < 𝑝 ) |
| 123 |
52 122
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 124 |
120 123
|
rerpdivcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 125 |
123
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 126 |
125
|
mullidd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 · ( log ‘ 𝑝 ) ) = ( log ‘ 𝑝 ) ) |
| 127 |
107 119
|
logled |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ≤ 𝐴 ↔ ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ) ) |
| 128 |
64 127
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ) |
| 129 |
126 128
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) |
| 130 |
|
1re |
⊢ 1 ∈ ℝ |
| 131 |
130
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 ∈ ℝ ) |
| 132 |
131 120 123
|
lemuldivd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ↔ 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 133 |
129 132
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) |
| 134 |
|
flge1nn |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ ) |
| 135 |
124 133 134
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ ) |
| 136 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 137 |
135 136
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 138 |
103
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℂ ) |
| 139 |
138
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℂ ) |
| 140 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑝 ↑ 𝑘 ) = ( 𝑝 ↑ 1 ) ) |
| 141 |
140
|
fveq2d |
⊢ ( 𝑘 = 1 → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( Λ ‘ ( 𝑝 ↑ 1 ) ) ) |
| 142 |
140
|
eleq1d |
⊢ ( 𝑘 = 1 → ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ ↔ ( 𝑝 ↑ 1 ) ∈ ℙ ) ) |
| 143 |
140
|
fveq2d |
⊢ ( 𝑘 = 1 → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ ( 𝑝 ↑ 1 ) ) ) |
| 144 |
142 143
|
ifbieq1d |
⊢ ( 𝑘 = 1 → if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) = if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) |
| 145 |
141 144
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) = ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) ) |
| 146 |
145 140
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) / ( 𝑝 ↑ 1 ) ) ) |
| 147 |
137 139 146
|
fsum1p |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) / ( 𝑝 ↑ 1 ) ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 148 |
51
|
nncnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℂ ) |
| 149 |
148
|
exp1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
| 150 |
149
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( Λ ‘ ( 𝑝 ↑ 1 ) ) = ( Λ ‘ 𝑝 ) ) |
| 151 |
|
vmaprm |
⊢ ( 𝑝 ∈ ℙ → ( Λ ‘ 𝑝 ) = ( log ‘ 𝑝 ) ) |
| 152 |
49 151
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( Λ ‘ 𝑝 ) = ( log ‘ 𝑝 ) ) |
| 153 |
150 152
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( Λ ‘ ( 𝑝 ↑ 1 ) ) = ( log ‘ 𝑝 ) ) |
| 154 |
149 49
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ↑ 1 ) ∈ ℙ ) |
| 155 |
154
|
iftrued |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) = ( log ‘ ( 𝑝 ↑ 1 ) ) ) |
| 156 |
149
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ ( 𝑝 ↑ 1 ) ) = ( log ‘ 𝑝 ) ) |
| 157 |
155 156
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) = ( log ‘ 𝑝 ) ) |
| 158 |
153 157
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) = ( ( log ‘ 𝑝 ) − ( log ‘ 𝑝 ) ) ) |
| 159 |
125
|
subidd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) − ( log ‘ 𝑝 ) ) = 0 ) |
| 160 |
158 159
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) = 0 ) |
| 161 |
160 149
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) / ( 𝑝 ↑ 1 ) ) = ( 0 / 𝑝 ) ) |
| 162 |
107
|
rpcnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) ) |
| 163 |
|
div0 |
⊢ ( ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) → ( 0 / 𝑝 ) = 0 ) |
| 164 |
162 163
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 0 / 𝑝 ) = 0 ) |
| 165 |
161 164
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) / ( 𝑝 ↑ 1 ) ) = 0 ) |
| 166 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 167 |
166
|
oveq1i |
⊢ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 168 |
167
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 169 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 170 |
|
eluz2nn |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℕ ) |
| 171 |
169 170
|
syl |
⊢ ( 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 172 |
171 167
|
eleq2s |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 173 |
49 172 89
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 174 |
51
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → 𝑝 ∈ ℕ ) |
| 175 |
|
nnq |
⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℚ ) |
| 176 |
174 175
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → 𝑝 ∈ ℚ ) |
| 177 |
169 167
|
eleq2s |
⊢ ( 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 178 |
177
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) |
| 179 |
|
expnprm |
⊢ ( ( 𝑝 ∈ ℚ ∧ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ¬ ( 𝑝 ↑ 𝑘 ) ∈ ℙ ) |
| 180 |
176 178 179
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ¬ ( 𝑝 ↑ 𝑘 ) ∈ ℙ ) |
| 181 |
180
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) = 0 ) |
| 182 |
173 181
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) = ( ( log ‘ 𝑝 ) − 0 ) ) |
| 183 |
125
|
subid1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) − 0 ) = ( log ‘ 𝑝 ) ) |
| 184 |
183
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( log ‘ 𝑝 ) − 0 ) = ( log ‘ 𝑝 ) ) |
| 185 |
182 184
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) = ( log ‘ 𝑝 ) ) |
| 186 |
185
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 187 |
168 186
|
sumeq12dv |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 188 |
165 187
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( ( Λ ‘ ( 𝑝 ↑ 1 ) ) − if ( ( 𝑝 ↑ 1 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 1 ) ) , 0 ) ) / ( 𝑝 ↑ 1 ) ) + Σ 𝑘 ∈ ( ( 1 + 1 ) ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ) = ( 0 + Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 189 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ Fin ) |
| 190 |
108
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 191 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 192 |
51 191 96
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 193 |
190 192
|
nndivred |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 194 |
171 193
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 195 |
189 194
|
fsumrecl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℝ ) |
| 196 |
195
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ∈ ℂ ) |
| 197 |
196
|
addlidd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 0 + Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 198 |
147 188 197
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ) |
| 199 |
107
|
rpreccld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 / 𝑝 ) ∈ ℝ+ ) |
| 200 |
124
|
flcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) |
| 201 |
200
|
peano2zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ∈ ℤ ) |
| 202 |
199 201
|
rpexpcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ∈ ℝ+ ) |
| 203 |
202
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 ≤ ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) |
| 204 |
51
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 / 𝑝 ) ∈ ℝ ) |
| 205 |
204
|
resqcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) ↑ 2 ) ∈ ℝ ) |
| 206 |
135
|
peano2nnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ∈ ℕ ) |
| 207 |
206
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ∈ ℕ0 ) |
| 208 |
204 207
|
reexpcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ∈ ℝ ) |
| 209 |
205 208
|
subge02d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 0 ≤ ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ↔ ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ≤ ( ( 1 / 𝑝 ) ↑ 2 ) ) ) |
| 210 |
203 209
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ≤ ( ( 1 / 𝑝 ) ↑ 2 ) ) |
| 211 |
110
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 − 1 ) ∈ ℝ+ ) |
| 212 |
211
|
rpcnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 𝑝 − 1 ) ∈ ℂ ∧ ( 𝑝 − 1 ) ≠ 0 ) ) |
| 213 |
199
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 / 𝑝 ) ∈ ℂ ) |
| 214 |
|
dmdcan |
⊢ ( ( ( ( 𝑝 − 1 ) ∈ ℂ ∧ ( 𝑝 − 1 ) ≠ 0 ) ∧ ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) ∧ ( 1 / 𝑝 ) ∈ ℂ ) → ( ( ( 𝑝 − 1 ) / 𝑝 ) · ( ( 1 / 𝑝 ) / ( 𝑝 − 1 ) ) ) = ( ( 1 / 𝑝 ) / 𝑝 ) ) |
| 215 |
212 162 213 214
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( 𝑝 − 1 ) / 𝑝 ) · ( ( 1 / 𝑝 ) / ( 𝑝 − 1 ) ) ) = ( ( 1 / 𝑝 ) / 𝑝 ) ) |
| 216 |
131
|
recnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 ∈ ℂ ) |
| 217 |
|
divsubdir |
⊢ ( ( 𝑝 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) ) → ( ( 𝑝 − 1 ) / 𝑝 ) = ( ( 𝑝 / 𝑝 ) − ( 1 / 𝑝 ) ) ) |
| 218 |
148 216 162 217
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 𝑝 − 1 ) / 𝑝 ) = ( ( 𝑝 / 𝑝 ) − ( 1 / 𝑝 ) ) ) |
| 219 |
|
divid |
⊢ ( ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) → ( 𝑝 / 𝑝 ) = 1 ) |
| 220 |
162 219
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 / 𝑝 ) = 1 ) |
| 221 |
220
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 𝑝 / 𝑝 ) − ( 1 / 𝑝 ) ) = ( 1 − ( 1 / 𝑝 ) ) ) |
| 222 |
218 221
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 𝑝 − 1 ) / 𝑝 ) = ( 1 − ( 1 / 𝑝 ) ) ) |
| 223 |
|
divdiv1 |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) ∧ ( ( 𝑝 − 1 ) ∈ ℂ ∧ ( 𝑝 − 1 ) ≠ 0 ) ) → ( ( 1 / 𝑝 ) / ( 𝑝 − 1 ) ) = ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 224 |
216 162 212 223
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) / ( 𝑝 − 1 ) ) = ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 225 |
222 224
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( 𝑝 − 1 ) / 𝑝 ) · ( ( 1 / 𝑝 ) / ( 𝑝 − 1 ) ) ) = ( ( 1 − ( 1 / 𝑝 ) ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) |
| 226 |
51
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ≠ 0 ) |
| 227 |
213 148 226
|
divrecd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) / 𝑝 ) = ( ( 1 / 𝑝 ) · ( 1 / 𝑝 ) ) ) |
| 228 |
213
|
sqvald |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) ↑ 2 ) = ( ( 1 / 𝑝 ) · ( 1 / 𝑝 ) ) ) |
| 229 |
227 228
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) / 𝑝 ) = ( ( 1 / 𝑝 ) ↑ 2 ) ) |
| 230 |
215 225 229
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 − ( 1 / 𝑝 ) ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) = ( ( 1 / 𝑝 ) ↑ 2 ) ) |
| 231 |
210 230
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ≤ ( ( 1 − ( 1 / 𝑝 ) ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) |
| 232 |
205 208
|
resubcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ∈ ℝ ) |
| 233 |
111
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ ) |
| 234 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ ( 1 / 𝑝 ) ∈ ℝ ) → ( 1 − ( 1 / 𝑝 ) ) ∈ ℝ ) |
| 235 |
130 204 234
|
sylancr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 − ( 1 / 𝑝 ) ) ∈ ℝ ) |
| 236 |
|
recgt1 |
⊢ ( ( 𝑝 ∈ ℝ ∧ 0 < 𝑝 ) → ( 1 < 𝑝 ↔ ( 1 / 𝑝 ) < 1 ) ) |
| 237 |
52 117 236
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 < 𝑝 ↔ ( 1 / 𝑝 ) < 1 ) ) |
| 238 |
122 237
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 / 𝑝 ) < 1 ) |
| 239 |
|
posdif |
⊢ ( ( ( 1 / 𝑝 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 𝑝 ) < 1 ↔ 0 < ( 1 − ( 1 / 𝑝 ) ) ) ) |
| 240 |
204 130 239
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( 1 / 𝑝 ) < 1 ↔ 0 < ( 1 − ( 1 / 𝑝 ) ) ) ) |
| 241 |
238 240
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 < ( 1 − ( 1 / 𝑝 ) ) ) |
| 242 |
|
ledivmul |
⊢ ( ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ∈ ℝ ∧ ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ ∧ ( ( 1 − ( 1 / 𝑝 ) ) ∈ ℝ ∧ 0 < ( 1 − ( 1 / 𝑝 ) ) ) ) → ( ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ≤ ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ↔ ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ≤ ( ( 1 − ( 1 / 𝑝 ) ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) ) |
| 243 |
232 233 235 241 242
|
syl112anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ≤ ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ↔ ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) ≤ ( ( 1 − ( 1 / 𝑝 ) ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) ) |
| 244 |
231 243
|
mpbird |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ≤ ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 245 |
235 241
|
elrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 − ( 1 / 𝑝 ) ) ∈ ℝ+ ) |
| 246 |
232 245
|
rerpdivcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ∈ ℝ ) |
| 247 |
246 233 123
|
lemul2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ≤ ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ↔ ( ( log ‘ 𝑝 ) · ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ) ≤ ( ( log ‘ 𝑝 ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) ) |
| 248 |
244 247
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ) ≤ ( ( log ‘ 𝑝 ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) |
| 249 |
125
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 250 |
192
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ∈ ℂ ) |
| 251 |
192
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑝 ↑ 𝑘 ) ≠ 0 ) |
| 252 |
249 250 251
|
divrecd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( 1 / ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 253 |
148
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℂ ) |
| 254 |
51
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ∈ ℕ ) |
| 255 |
254
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑝 ≠ 0 ) |
| 256 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 257 |
256
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 258 |
253 255 257
|
exprecd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑝 ) ↑ 𝑘 ) = ( 1 / ( 𝑝 ↑ 𝑘 ) ) ) |
| 259 |
258
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 𝑝 ) · ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( 1 / ( 𝑝 ↑ 𝑘 ) ) ) ) |
| 260 |
252 259
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) ) |
| 261 |
171 260
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) ) |
| 262 |
261
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) · ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) ) |
| 263 |
171
|
nnnn0d |
⊢ ( 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ0 ) |
| 264 |
|
expcl |
⊢ ( ( ( 1 / 𝑝 ) ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 𝑝 ) ↑ 𝑘 ) ∈ ℂ ) |
| 265 |
213 263 264
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( 1 / 𝑝 ) ↑ 𝑘 ) ∈ ℂ ) |
| 266 |
189 125 265
|
fsummulc2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) · ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) ) |
| 267 |
|
fzval3 |
⊢ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ → ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = ( 2 ..^ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) |
| 268 |
200 267
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = ( 2 ..^ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) |
| 269 |
268
|
sumeq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( 1 / 𝑝 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( 2 ..^ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) |
| 270 |
204 238
|
ltned |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 / 𝑝 ) ≠ 1 ) |
| 271 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 272 |
271
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 2 ∈ ℕ0 ) |
| 273 |
|
eluzp1p1 |
⊢ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ( ℤ≥ ‘ 1 ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 274 |
137 273
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ∈ ( ℤ≥ ‘ ( 1 + 1 ) ) ) |
| 275 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 276 |
275
|
fveq2i |
⊢ ( ℤ≥ ‘ 2 ) = ( ℤ≥ ‘ ( 1 + 1 ) ) |
| 277 |
274 276
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 278 |
213 270 272 277
|
geoserg |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ..^ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ( ( 1 / 𝑝 ) ↑ 𝑘 ) = ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ) |
| 279 |
269 278
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( 1 / 𝑝 ) ↑ 𝑘 ) = ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ) |
| 280 |
279
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( 1 / 𝑝 ) ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ) ) |
| 281 |
262 266 280
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( ( ( ( 1 / 𝑝 ) ↑ 2 ) − ( ( 1 / 𝑝 ) ↑ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) + 1 ) ) ) / ( 1 − ( 1 / 𝑝 ) ) ) ) ) |
| 282 |
111
|
nncnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 · ( 𝑝 − 1 ) ) ∈ ℂ ) |
| 283 |
111
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 · ( 𝑝 − 1 ) ) ≠ 0 ) |
| 284 |
125 282 283
|
divrecd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) = ( ( log ‘ 𝑝 ) · ( 1 / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) ) |
| 285 |
248 281 284
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 2 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 ↑ 𝑘 ) ) ≤ ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 286 |
198 285
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ≤ ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 287 |
83 105 112 286
|
fsumle |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ≤ Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 288 |
|
elfzuz |
⊢ ( 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 289 |
|
eluz2nn |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 𝑝 ∈ ℕ ) |
| 290 |
288 289
|
syl |
⊢ ( 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) → 𝑝 ∈ ℕ ) |
| 291 |
290
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → 𝑝 ∈ ℕ ) |
| 292 |
291
|
nnred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → 𝑝 ∈ ℝ ) |
| 293 |
288
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 294 |
|
eluz2gt1 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) |
| 295 |
293 294
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → 1 < 𝑝 ) |
| 296 |
292 295
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 297 |
293 109
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( 𝑝 − 1 ) ∈ ℕ ) |
| 298 |
291 297
|
nnmulcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( 𝑝 · ( 𝑝 − 1 ) ) ∈ ℕ ) |
| 299 |
298
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( 𝑝 · ( 𝑝 − 1 ) ) ∈ ℝ+ ) |
| 300 |
296 299
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ+ ) |
| 301 |
300
|
rpred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ ) |
| 302 |
47 301
|
fsumrecl |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ∈ ℝ ) |
| 303 |
300
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ) → 0 ≤ ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 304 |
47 301 303 82
|
fsumless |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ≤ Σ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ) |
| 305 |
|
rplogsumlem1 |
⊢ ( ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℕ → Σ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ≤ 2 ) |
| 306 |
75 305
|
syl |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( 2 ... ( ( abs ‘ 𝐴 ) + 1 ) ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ≤ 2 ) |
| 307 |
113 302 115 304 306
|
letrd |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) / ( 𝑝 · ( 𝑝 − 1 ) ) ) ≤ 2 ) |
| 308 |
106 113 115 287 307
|
letrd |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( ( ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) − if ( ( 𝑝 ↑ 𝑘 ) ∈ ℙ , ( log ‘ ( 𝑝 ↑ 𝑘 ) ) , 0 ) ) / ( 𝑝 ↑ 𝑘 ) ) ≤ 2 ) |
| 309 |
46 308
|
eqbrtrd |
⊢ ( 𝐴 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... 𝐴 ) ( ( ( Λ ‘ 𝑛 ) − if ( 𝑛 ∈ ℙ , ( log ‘ 𝑛 ) , 0 ) ) / 𝑛 ) ≤ 2 ) |