| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.u |
⊢ 𝑈 = ( Unit ‘ 𝑍 ) |
| 5 |
|
rpvmasum.b |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
| 6 |
|
rpvmasum.t |
⊢ 𝑇 = ( ◡ 𝐿 “ { 𝐴 } ) |
| 7 |
1 2 3 4 5 6
|
rpvmasum |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 8 |
3
|
phicld |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ϕ ‘ 𝑁 ) ∈ ℕ ) |
| 10 |
9
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ϕ ‘ 𝑁 ) ∈ ℂ ) |
| 11 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 12 |
|
inss1 |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) |
| 13 |
|
ssfi |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∈ Fin ) |
| 14 |
11 12 13
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∈ Fin ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) |
| 16 |
15
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 17 |
|
elfznn |
⊢ ( 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑝 ∈ ℕ ) |
| 18 |
16 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → 𝑝 ∈ ℕ ) |
| 19 |
|
vmacl |
⊢ ( 𝑝 ∈ ℕ → ( Λ ‘ 𝑝 ) ∈ ℝ ) |
| 20 |
|
nndivre |
⊢ ( ( ( Λ ‘ 𝑝 ) ∈ ℝ ∧ 𝑝 ∈ ℕ ) → ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 21 |
19 20
|
mpancom |
⊢ ( 𝑝 ∈ ℕ → ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 22 |
18 21
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 23 |
14 22
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 24 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℂ ) |
| 25 |
10 24
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) ∈ ℂ ) |
| 26 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 29 |
25 28
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 30 |
|
inss1 |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) |
| 31 |
|
ssfi |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ∧ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ∈ Fin ) |
| 32 |
11 30 31
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ∈ Fin ) |
| 33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) |
| 34 |
33
|
elin1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 35 |
34 17
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → 𝑝 ∈ ℕ ) |
| 36 |
|
nnrp |
⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℝ+ ) |
| 37 |
36
|
relogcld |
⊢ ( 𝑝 ∈ ℕ → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 38 |
37 36
|
rerpdivcld |
⊢ ( 𝑝 ∈ ℕ → ( ( log ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 39 |
35 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → ( ( log ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 40 |
32 39
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ∈ ℂ ) |
| 42 |
10 41
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ∈ ℂ ) |
| 43 |
42 28
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 44 |
10 24 41
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ϕ ‘ 𝑁 ) · ( Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) − Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ) = ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ) ) |
| 45 |
19
|
recnd |
⊢ ( 𝑝 ∈ ℕ → ( Λ ‘ 𝑝 ) ∈ ℂ ) |
| 46 |
|
0re |
⊢ 0 ∈ ℝ |
| 47 |
|
ifcl |
⊢ ( ( ( log ‘ 𝑝 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ∈ ℝ ) |
| 48 |
37 46 47
|
sylancl |
⊢ ( 𝑝 ∈ ℕ → if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( 𝑝 ∈ ℕ → if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ∈ ℂ ) |
| 50 |
36
|
rpcnne0d |
⊢ ( 𝑝 ∈ ℕ → ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) ) |
| 51 |
|
divsubdir |
⊢ ( ( ( Λ ‘ 𝑝 ) ∈ ℂ ∧ if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ∈ ℂ ∧ ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) ) → ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) = ( ( ( Λ ‘ 𝑝 ) / 𝑝 ) − ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) ) |
| 52 |
45 49 50 51
|
syl3anc |
⊢ ( 𝑝 ∈ ℕ → ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) = ( ( ( Λ ‘ 𝑝 ) / 𝑝 ) − ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) ) |
| 53 |
18 52
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) = ( ( ( Λ ‘ 𝑝 ) / 𝑝 ) − ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) ) |
| 54 |
53
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) = Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) / 𝑝 ) − ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) ) |
| 55 |
21
|
recnd |
⊢ ( 𝑝 ∈ ℕ → ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℂ ) |
| 56 |
18 55
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → ( ( Λ ‘ 𝑝 ) / 𝑝 ) ∈ ℂ ) |
| 57 |
48 36
|
rerpdivcld |
⊢ ( 𝑝 ∈ ℕ → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ∈ ℝ ) |
| 58 |
57
|
recnd |
⊢ ( 𝑝 ∈ ℕ → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ∈ ℂ ) |
| 59 |
18 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ∈ ℂ ) |
| 60 |
14 56 59
|
fsumsub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) / 𝑝 ) − ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) = ( Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) − Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) ) |
| 61 |
|
inss2 |
⊢ ( ℙ ∩ 𝑇 ) ⊆ 𝑇 |
| 62 |
|
sslin |
⊢ ( ( ℙ ∩ 𝑇 ) ⊆ 𝑇 → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) |
| 63 |
61 62
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) |
| 64 |
35 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ∈ ℂ ) |
| 65 |
|
eldif |
⊢ ( 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ↔ ( 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∧ ¬ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) |
| 66 |
|
incom |
⊢ ( ℙ ∩ 𝑇 ) = ( 𝑇 ∩ ℙ ) |
| 67 |
66
|
ineq2i |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) = ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( 𝑇 ∩ ℙ ) ) |
| 68 |
|
inass |
⊢ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∩ ℙ ) = ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( 𝑇 ∩ ℙ ) ) |
| 69 |
67 68
|
eqtr4i |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) = ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∩ ℙ ) |
| 70 |
69
|
elin2 |
⊢ ( 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ↔ ( 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∧ 𝑝 ∈ ℙ ) ) |
| 71 |
70
|
simplbi2 |
⊢ ( 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) → ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) |
| 72 |
71
|
con3dimp |
⊢ ( ( 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∧ ¬ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → ¬ 𝑝 ∈ ℙ ) |
| 73 |
65 72
|
sylbi |
⊢ ( 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → ¬ 𝑝 ∈ ℙ ) |
| 74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) → ¬ 𝑝 ∈ ℙ ) |
| 75 |
74
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) → if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) = 0 ) |
| 76 |
75
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) = ( 0 / 𝑝 ) ) |
| 77 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) |
| 78 |
77 18
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) → 𝑝 ∈ ℕ ) |
| 79 |
|
div0 |
⊢ ( ( 𝑝 ∈ ℂ ∧ 𝑝 ≠ 0 ) → ( 0 / 𝑝 ) = 0 ) |
| 80 |
50 79
|
syl |
⊢ ( 𝑝 ∈ ℕ → ( 0 / 𝑝 ) = 0 ) |
| 81 |
78 80
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) → ( 0 / 𝑝 ) = 0 ) |
| 82 |
76 81
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ∖ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) ) → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) = 0 ) |
| 83 |
63 64 82 14
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) = Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) |
| 84 |
|
inss2 |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ( ℙ ∩ 𝑇 ) |
| 85 |
|
inss1 |
⊢ ( ℙ ∩ 𝑇 ) ⊆ ℙ |
| 86 |
84 85
|
sstri |
⊢ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ⊆ ℙ |
| 87 |
86 33
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → 𝑝 ∈ ℙ ) |
| 88 |
87
|
iftrued |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) = ( log ‘ 𝑝 ) ) |
| 89 |
88
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ) → ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) = ( ( log ‘ 𝑝 ) / 𝑝 ) ) |
| 90 |
89
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) = Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) |
| 91 |
83 90
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) = Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) − Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) / 𝑝 ) ) = ( Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) − Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ) |
| 93 |
54 60 92
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) = ( Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) − Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ) |
| 94 |
93
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) = ( ( ϕ ‘ 𝑁 ) · ( Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) − Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ) ) |
| 95 |
25 42 28
|
nnncan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) − ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) = ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) ) ) |
| 96 |
44 94 95
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) = ( ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) − ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ) |
| 97 |
96
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) − ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ) ) |
| 98 |
19 48
|
resubcld |
⊢ ( 𝑝 ∈ ℕ → ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) ∈ ℝ ) |
| 99 |
98 36
|
rerpdivcld |
⊢ ( 𝑝 ∈ ℕ → ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ∈ ℝ ) |
| 100 |
18 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ∈ ℝ ) |
| 101 |
14 100
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ∈ ℝ ) |
| 102 |
101
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ∈ ℂ ) |
| 103 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 104 |
8
|
nncnd |
⊢ ( 𝜑 → ( ϕ ‘ 𝑁 ) ∈ ℂ ) |
| 105 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( ϕ ‘ 𝑁 ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( ϕ ‘ 𝑁 ) ) ∈ 𝑂(1) ) |
| 106 |
103 104 105
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ϕ ‘ 𝑁 ) ) ∈ 𝑂(1) ) |
| 107 |
103
|
a1i |
⊢ ( 𝜑 → ℝ+ ⊆ ℝ ) |
| 108 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 109 |
|
2re |
⊢ 2 ∈ ℝ |
| 110 |
109
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 111 |
|
breq1 |
⊢ ( ( log ‘ 𝑝 ) = if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) → ( ( log ‘ 𝑝 ) ≤ ( Λ ‘ 𝑝 ) ↔ if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ≤ ( Λ ‘ 𝑝 ) ) ) |
| 112 |
|
breq1 |
⊢ ( 0 = if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) → ( 0 ≤ ( Λ ‘ 𝑝 ) ↔ if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ≤ ( Λ ‘ 𝑝 ) ) ) |
| 113 |
37
|
adantr |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 114 |
|
vmaprm |
⊢ ( 𝑝 ∈ ℙ → ( Λ ‘ 𝑝 ) = ( log ‘ 𝑝 ) ) |
| 115 |
114
|
adantl |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( Λ ‘ 𝑝 ) = ( log ‘ 𝑝 ) ) |
| 116 |
115
|
eqcomd |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( log ‘ 𝑝 ) = ( Λ ‘ 𝑝 ) ) |
| 117 |
113 116
|
eqled |
⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( log ‘ 𝑝 ) ≤ ( Λ ‘ 𝑝 ) ) |
| 118 |
|
vmage0 |
⊢ ( 𝑝 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑝 ) ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝑝 ∈ ℕ ∧ ¬ 𝑝 ∈ ℙ ) → 0 ≤ ( Λ ‘ 𝑝 ) ) |
| 120 |
111 112 117 119
|
ifbothda |
⊢ ( 𝑝 ∈ ℕ → if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ≤ ( Λ ‘ 𝑝 ) ) |
| 121 |
19 48
|
subge0d |
⊢ ( 𝑝 ∈ ℕ → ( 0 ≤ ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) ↔ if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ≤ ( Λ ‘ 𝑝 ) ) ) |
| 122 |
120 121
|
mpbird |
⊢ ( 𝑝 ∈ ℕ → 0 ≤ ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) ) |
| 123 |
98 36 122
|
divge0d |
⊢ ( 𝑝 ∈ ℕ → 0 ≤ ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) |
| 124 |
18 123
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ) → 0 ≤ ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) |
| 125 |
14 100 124
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) |
| 126 |
101 125
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) = Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) |
| 127 |
17
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑝 ∈ ℕ ) |
| 128 |
127 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ∈ ℝ ) |
| 129 |
11 128
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ∈ ℝ ) |
| 130 |
109
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 2 ∈ ℝ ) |
| 131 |
127 123
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) |
| 132 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 133 |
11 128 131 132
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ≤ Σ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) |
| 134 |
107
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 135 |
134
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 136 |
|
rplogsumlem2 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℤ → Σ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ≤ 2 ) |
| 137 |
135 136
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ≤ 2 ) |
| 138 |
101 129 130 133 137
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ≤ 2 ) |
| 139 |
126 138
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) ≤ 2 ) |
| 140 |
139
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) ≤ 2 ) |
| 141 |
107 102 108 110 140
|
elo1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) ∈ 𝑂(1) ) |
| 142 |
10 102 106 141
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( ( Λ ‘ 𝑝 ) − if ( 𝑝 ∈ ℙ , ( log ‘ 𝑝 ) , 0 ) ) / 𝑝 ) ) ) ∈ 𝑂(1) ) |
| 143 |
97 142
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) − ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 144 |
29 43 143
|
o1dif |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ 𝑇 ) ( ( Λ ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ↔ ( 𝑥 ∈ ℝ+ ↦ ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) ) |
| 145 |
7 144
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ϕ ‘ 𝑁 ) · Σ 𝑝 ∈ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ℙ ∩ 𝑇 ) ) ( ( log ‘ 𝑝 ) / 𝑝 ) ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |