| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem42.1 |
|- F/ i ph |
| 2 |
|
stoweidlem42.2 |
|- F/ t ph |
| 3 |
|
stoweidlem42.3 |
|- F/_ t Y |
| 4 |
|
stoweidlem42.4 |
|- P = ( f e. Y , g e. Y |-> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) ) |
| 5 |
|
stoweidlem42.5 |
|- X = ( seq 1 ( P , U ) ` M ) |
| 6 |
|
stoweidlem42.6 |
|- F = ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 7 |
|
stoweidlem42.7 |
|- Z = ( t e. T |-> ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 8 |
|
stoweidlem42.8 |
|- ( ph -> M e. NN ) |
| 9 |
|
stoweidlem42.9 |
|- ( ph -> U : ( 1 ... M ) --> Y ) |
| 10 |
|
stoweidlem42.10 |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> A. t e. B ( 1 - ( E / M ) ) < ( ( U ` i ) ` t ) ) |
| 11 |
|
stoweidlem42.11 |
|- ( ph -> E e. RR+ ) |
| 12 |
|
stoweidlem42.12 |
|- ( ph -> E < ( 1 / 3 ) ) |
| 13 |
|
stoweidlem42.13 |
|- ( ( ph /\ f e. Y ) -> f : T --> RR ) |
| 14 |
|
stoweidlem42.14 |
|- ( ( ph /\ f e. Y /\ g e. Y ) -> ( t e. T |-> ( ( f ` t ) x. ( g ` t ) ) ) e. Y ) |
| 15 |
|
stoweidlem42.15 |
|- ( ph -> T e. _V ) |
| 16 |
|
stoweidlem42.16 |
|- ( ph -> B C_ T ) |
| 17 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 18 |
11
|
rpred |
|- ( ph -> E e. RR ) |
| 19 |
17 18
|
resubcld |
|- ( ph -> ( 1 - E ) e. RR ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ t e. B ) -> ( 1 - E ) e. RR ) |
| 21 |
18 8
|
nndivred |
|- ( ph -> ( E / M ) e. RR ) |
| 22 |
17 21
|
resubcld |
|- ( ph -> ( 1 - ( E / M ) ) e. RR ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ t e. B ) -> ( 1 - ( E / M ) ) e. RR ) |
| 24 |
8
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ t e. B ) -> M e. NN0 ) |
| 26 |
23 25
|
reexpcld |
|- ( ( ph /\ t e. B ) -> ( ( 1 - ( E / M ) ) ^ M ) e. RR ) |
| 27 |
|
elnnuz |
|- ( M e. NN <-> M e. ( ZZ>= ` 1 ) ) |
| 28 |
8 27
|
sylib |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ t e. B ) -> M e. ( ZZ>= ` 1 ) ) |
| 30 |
|
nfv |
|- F/ i t e. B |
| 31 |
1 30
|
nfan |
|- F/ i ( ph /\ t e. B ) |
| 32 |
|
nfv |
|- F/ i a e. ( 1 ... M ) |
| 33 |
31 32
|
nfan |
|- F/ i ( ( ph /\ t e. B ) /\ a e. ( 1 ... M ) ) |
| 34 |
|
nfcv |
|- F/_ i T |
| 35 |
|
nfmpt1 |
|- F/_ i ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
| 36 |
34 35
|
nfmpt |
|- F/_ i ( t e. T |-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 37 |
6 36
|
nfcxfr |
|- F/_ i F |
| 38 |
|
nfcv |
|- F/_ i t |
| 39 |
37 38
|
nffv |
|- F/_ i ( F ` t ) |
| 40 |
|
nfcv |
|- F/_ i a |
| 41 |
39 40
|
nffv |
|- F/_ i ( ( F ` t ) ` a ) |
| 42 |
41
|
nfel1 |
|- F/ i ( ( F ` t ) ` a ) e. RR |
| 43 |
33 42
|
nfim |
|- F/ i ( ( ( ph /\ t e. B ) /\ a e. ( 1 ... M ) ) -> ( ( F ` t ) ` a ) e. RR ) |
| 44 |
|
eleq1 |
|- ( i = a -> ( i e. ( 1 ... M ) <-> a e. ( 1 ... M ) ) ) |
| 45 |
44
|
anbi2d |
|- ( i = a -> ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) <-> ( ( ph /\ t e. B ) /\ a e. ( 1 ... M ) ) ) ) |
| 46 |
|
fveq2 |
|- ( i = a -> ( ( F ` t ) ` i ) = ( ( F ` t ) ` a ) ) |
| 47 |
46
|
eleq1d |
|- ( i = a -> ( ( ( F ` t ) ` i ) e. RR <-> ( ( F ` t ) ` a ) e. RR ) ) |
| 48 |
45 47
|
imbi12d |
|- ( i = a -> ( ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) e. RR ) <-> ( ( ( ph /\ t e. B ) /\ a e. ( 1 ... M ) ) -> ( ( F ` t ) ` a ) e. RR ) ) ) |
| 49 |
16
|
sselda |
|- ( ( ph /\ t e. B ) -> t e. T ) |
| 50 |
|
ovex |
|- ( 1 ... M ) e. _V |
| 51 |
|
mptexg |
|- ( ( 1 ... M ) e. _V -> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) |
| 52 |
50 51
|
mp1i |
|- ( ( ph /\ t e. B ) -> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) |
| 53 |
6
|
fvmpt2 |
|- ( ( t e. T /\ ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) e. _V ) -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 54 |
49 52 53
|
syl2anc |
|- ( ( ph /\ t e. B ) -> ( F ` t ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) ) |
| 55 |
9
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) e. Y ) |
| 56 |
|
simpl |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ph ) |
| 57 |
56 55
|
jca |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( ph /\ ( U ` i ) e. Y ) ) |
| 58 |
|
eleq1 |
|- ( f = ( U ` i ) -> ( f e. Y <-> ( U ` i ) e. Y ) ) |
| 59 |
58
|
anbi2d |
|- ( f = ( U ` i ) -> ( ( ph /\ f e. Y ) <-> ( ph /\ ( U ` i ) e. Y ) ) ) |
| 60 |
|
feq1 |
|- ( f = ( U ` i ) -> ( f : T --> RR <-> ( U ` i ) : T --> RR ) ) |
| 61 |
59 60
|
imbi12d |
|- ( f = ( U ` i ) -> ( ( ( ph /\ f e. Y ) -> f : T --> RR ) <-> ( ( ph /\ ( U ` i ) e. Y ) -> ( U ` i ) : T --> RR ) ) ) |
| 62 |
61 13
|
vtoclg |
|- ( ( U ` i ) e. Y -> ( ( ph /\ ( U ` i ) e. Y ) -> ( U ` i ) : T --> RR ) ) |
| 63 |
55 57 62
|
sylc |
|- ( ( ph /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
| 64 |
63
|
adantlr |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( U ` i ) : T --> RR ) |
| 65 |
49
|
adantr |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> t e. T ) |
| 66 |
64 65
|
ffvelcdmd |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( ( U ` i ) ` t ) e. RR ) |
| 67 |
54 66
|
fvmpt2d |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) = ( ( U ` i ) ` t ) ) |
| 68 |
67 66
|
eqeltrd |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( ( F ` t ) ` i ) e. RR ) |
| 69 |
43 48 68
|
chvarfv |
|- ( ( ( ph /\ t e. B ) /\ a e. ( 1 ... M ) ) -> ( ( F ` t ) ` a ) e. RR ) |
| 70 |
|
remulcl |
|- ( ( a e. RR /\ j e. RR ) -> ( a x. j ) e. RR ) |
| 71 |
70
|
adantl |
|- ( ( ( ph /\ t e. B ) /\ ( a e. RR /\ j e. RR ) ) -> ( a x. j ) e. RR ) |
| 72 |
29 69 71
|
seqcl |
|- ( ( ph /\ t e. B ) -> ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) |
| 73 |
11
|
rpcnd |
|- ( ph -> E e. CC ) |
| 74 |
8
|
nncnd |
|- ( ph -> M e. CC ) |
| 75 |
8
|
nnne0d |
|- ( ph -> M =/= 0 ) |
| 76 |
73 74 75
|
divcan1d |
|- ( ph -> ( ( E / M ) x. M ) = E ) |
| 77 |
76
|
eqcomd |
|- ( ph -> E = ( ( E / M ) x. M ) ) |
| 78 |
77
|
oveq2d |
|- ( ph -> ( 1 - E ) = ( 1 - ( ( E / M ) x. M ) ) ) |
| 79 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 80 |
73 74 75
|
divcld |
|- ( ph -> ( E / M ) e. CC ) |
| 81 |
80 74
|
mulcld |
|- ( ph -> ( ( E / M ) x. M ) e. CC ) |
| 82 |
79 81
|
negsubd |
|- ( ph -> ( 1 + -u ( ( E / M ) x. M ) ) = ( 1 - ( ( E / M ) x. M ) ) ) |
| 83 |
80 74
|
mulneg1d |
|- ( ph -> ( -u ( E / M ) x. M ) = -u ( ( E / M ) x. M ) ) |
| 84 |
83
|
eqcomd |
|- ( ph -> -u ( ( E / M ) x. M ) = ( -u ( E / M ) x. M ) ) |
| 85 |
84
|
oveq2d |
|- ( ph -> ( 1 + -u ( ( E / M ) x. M ) ) = ( 1 + ( -u ( E / M ) x. M ) ) ) |
| 86 |
78 82 85
|
3eqtr2d |
|- ( ph -> ( 1 - E ) = ( 1 + ( -u ( E / M ) x. M ) ) ) |
| 87 |
21
|
renegcld |
|- ( ph -> -u ( E / M ) e. RR ) |
| 88 |
8
|
nnred |
|- ( ph -> M e. RR ) |
| 89 |
|
3re |
|- 3 e. RR |
| 90 |
89
|
a1i |
|- ( ph -> 3 e. RR ) |
| 91 |
|
3ne0 |
|- 3 =/= 0 |
| 92 |
91
|
a1i |
|- ( ph -> 3 =/= 0 ) |
| 93 |
90 92
|
rereccld |
|- ( ph -> ( 1 / 3 ) e. RR ) |
| 94 |
|
1lt3 |
|- 1 < 3 |
| 95 |
94
|
a1i |
|- ( ph -> 1 < 3 ) |
| 96 |
|
0lt1 |
|- 0 < 1 |
| 97 |
96
|
a1i |
|- ( ph -> 0 < 1 ) |
| 98 |
|
3pos |
|- 0 < 3 |
| 99 |
98
|
a1i |
|- ( ph -> 0 < 3 ) |
| 100 |
|
ltdiv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( 3 e. RR /\ 0 < 3 ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( 1 < 3 <-> ( 1 / 3 ) < ( 1 / 1 ) ) ) |
| 101 |
17 97 90 99 17 97 100
|
syl222anc |
|- ( ph -> ( 1 < 3 <-> ( 1 / 3 ) < ( 1 / 1 ) ) ) |
| 102 |
95 101
|
mpbid |
|- ( ph -> ( 1 / 3 ) < ( 1 / 1 ) ) |
| 103 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 104 |
102 103
|
breqtrdi |
|- ( ph -> ( 1 / 3 ) < 1 ) |
| 105 |
18 93 17 12 104
|
lttrd |
|- ( ph -> E < 1 ) |
| 106 |
8
|
nnge1d |
|- ( ph -> 1 <_ M ) |
| 107 |
18 17 88 105 106
|
ltletrd |
|- ( ph -> E < M ) |
| 108 |
18 88 107
|
ltled |
|- ( ph -> E <_ M ) |
| 109 |
11
|
rpregt0d |
|- ( ph -> ( E e. RR /\ 0 < E ) ) |
| 110 |
8
|
nngt0d |
|- ( ph -> 0 < M ) |
| 111 |
|
lediv2 |
|- ( ( ( E e. RR /\ 0 < E ) /\ ( M e. RR /\ 0 < M ) /\ ( E e. RR /\ 0 < E ) ) -> ( E <_ M <-> ( E / M ) <_ ( E / E ) ) ) |
| 112 |
109 88 110 109 111
|
syl121anc |
|- ( ph -> ( E <_ M <-> ( E / M ) <_ ( E / E ) ) ) |
| 113 |
108 112
|
mpbid |
|- ( ph -> ( E / M ) <_ ( E / E ) ) |
| 114 |
11
|
rpcnne0d |
|- ( ph -> ( E e. CC /\ E =/= 0 ) ) |
| 115 |
|
divid |
|- ( ( E e. CC /\ E =/= 0 ) -> ( E / E ) = 1 ) |
| 116 |
114 115
|
syl |
|- ( ph -> ( E / E ) = 1 ) |
| 117 |
113 116
|
breqtrd |
|- ( ph -> ( E / M ) <_ 1 ) |
| 118 |
21 17
|
lenegd |
|- ( ph -> ( ( E / M ) <_ 1 <-> -u 1 <_ -u ( E / M ) ) ) |
| 119 |
117 118
|
mpbid |
|- ( ph -> -u 1 <_ -u ( E / M ) ) |
| 120 |
|
bernneq |
|- ( ( -u ( E / M ) e. RR /\ M e. NN0 /\ -u 1 <_ -u ( E / M ) ) -> ( 1 + ( -u ( E / M ) x. M ) ) <_ ( ( 1 + -u ( E / M ) ) ^ M ) ) |
| 121 |
87 24 119 120
|
syl3anc |
|- ( ph -> ( 1 + ( -u ( E / M ) x. M ) ) <_ ( ( 1 + -u ( E / M ) ) ^ M ) ) |
| 122 |
79 80
|
negsubd |
|- ( ph -> ( 1 + -u ( E / M ) ) = ( 1 - ( E / M ) ) ) |
| 123 |
122
|
oveq1d |
|- ( ph -> ( ( 1 + -u ( E / M ) ) ^ M ) = ( ( 1 - ( E / M ) ) ^ M ) ) |
| 124 |
121 123
|
breqtrd |
|- ( ph -> ( 1 + ( -u ( E / M ) x. M ) ) <_ ( ( 1 - ( E / M ) ) ^ M ) ) |
| 125 |
86 124
|
eqbrtrd |
|- ( ph -> ( 1 - E ) <_ ( ( 1 - ( E / M ) ) ^ M ) ) |
| 126 |
125
|
adantr |
|- ( ( ph /\ t e. B ) -> ( 1 - E ) <_ ( ( 1 - ( E / M ) ) ^ M ) ) |
| 127 |
|
eqid |
|- seq 1 ( x. , ( F ` t ) ) = seq 1 ( x. , ( F ` t ) ) |
| 128 |
8
|
adantr |
|- ( ( ph /\ t e. B ) -> M e. NN ) |
| 129 |
|
eqid |
|- ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) = ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) |
| 130 |
31 66 129
|
fmptdf |
|- ( ( ph /\ t e. B ) -> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) : ( 1 ... M ) --> RR ) |
| 131 |
54
|
feq1d |
|- ( ( ph /\ t e. B ) -> ( ( F ` t ) : ( 1 ... M ) --> RR <-> ( i e. ( 1 ... M ) |-> ( ( U ` i ) ` t ) ) : ( 1 ... M ) --> RR ) ) |
| 132 |
130 131
|
mpbird |
|- ( ( ph /\ t e. B ) -> ( F ` t ) : ( 1 ... M ) --> RR ) |
| 133 |
10
|
r19.21bi |
|- ( ( ( ph /\ i e. ( 1 ... M ) ) /\ t e. B ) -> ( 1 - ( E / M ) ) < ( ( U ` i ) ` t ) ) |
| 134 |
133
|
an32s |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( 1 - ( E / M ) ) < ( ( U ` i ) ` t ) ) |
| 135 |
134 67
|
breqtrrd |
|- ( ( ( ph /\ t e. B ) /\ i e. ( 1 ... M ) ) -> ( 1 - ( E / M ) ) < ( ( F ` t ) ` i ) ) |
| 136 |
80
|
addlidd |
|- ( ph -> ( 0 + ( E / M ) ) = ( E / M ) ) |
| 137 |
|
lediv2 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( M e. RR /\ 0 < M ) /\ ( E e. RR /\ 0 < E ) ) -> ( 1 <_ M <-> ( E / M ) <_ ( E / 1 ) ) ) |
| 138 |
17 97 88 110 109 137
|
syl221anc |
|- ( ph -> ( 1 <_ M <-> ( E / M ) <_ ( E / 1 ) ) ) |
| 139 |
106 138
|
mpbid |
|- ( ph -> ( E / M ) <_ ( E / 1 ) ) |
| 140 |
73
|
div1d |
|- ( ph -> ( E / 1 ) = E ) |
| 141 |
139 140
|
breqtrd |
|- ( ph -> ( E / M ) <_ E ) |
| 142 |
21 18 17 141 105
|
lelttrd |
|- ( ph -> ( E / M ) < 1 ) |
| 143 |
136 142
|
eqbrtrd |
|- ( ph -> ( 0 + ( E / M ) ) < 1 ) |
| 144 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 145 |
144 21 17
|
ltaddsubd |
|- ( ph -> ( ( 0 + ( E / M ) ) < 1 <-> 0 < ( 1 - ( E / M ) ) ) ) |
| 146 |
143 145
|
mpbid |
|- ( ph -> 0 < ( 1 - ( E / M ) ) ) |
| 147 |
22 146
|
elrpd |
|- ( ph -> ( 1 - ( E / M ) ) e. RR+ ) |
| 148 |
147
|
adantr |
|- ( ( ph /\ t e. B ) -> ( 1 - ( E / M ) ) e. RR+ ) |
| 149 |
39 31 127 128 132 135 148
|
stoweidlem3 |
|- ( ( ph /\ t e. B ) -> ( ( 1 - ( E / M ) ) ^ M ) < ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 150 |
20 26 72 126 149
|
lelttrd |
|- ( ( ph /\ t e. B ) -> ( 1 - E ) < ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 151 |
7
|
fvmpt2 |
|- ( ( t e. T /\ ( seq 1 ( x. , ( F ` t ) ) ` M ) e. RR ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 152 |
49 72 151
|
syl2anc |
|- ( ( ph /\ t e. B ) -> ( Z ` t ) = ( seq 1 ( x. , ( F ` t ) ) ` M ) ) |
| 153 |
150 152
|
breqtrrd |
|- ( ( ph /\ t e. B ) -> ( 1 - E ) < ( Z ` t ) ) |
| 154 |
|
simpl |
|- ( ( ph /\ t e. B ) -> ph ) |
| 155 |
1 3 4 5 6 7 15 8 9 13 14
|
fmuldfeq |
|- ( ( ph /\ t e. T ) -> ( X ` t ) = ( Z ` t ) ) |
| 156 |
154 49 155
|
syl2anc |
|- ( ( ph /\ t e. B ) -> ( X ` t ) = ( Z ` t ) ) |
| 157 |
153 156
|
breqtrrd |
|- ( ( ph /\ t e. B ) -> ( 1 - E ) < ( X ` t ) ) |
| 158 |
157
|
ex |
|- ( ph -> ( t e. B -> ( 1 - E ) < ( X ` t ) ) ) |
| 159 |
2 158
|
ralrimi |
|- ( ph -> A. t e. B ( 1 - E ) < ( X ` t ) ) |