| Step | Hyp | Ref | Expression | 
						
							| 1 |  | stoweidlem42.1 | ⊢ Ⅎ 𝑖 𝜑 | 
						
							| 2 |  | stoweidlem42.2 | ⊢ Ⅎ 𝑡 𝜑 | 
						
							| 3 |  | stoweidlem42.3 | ⊢ Ⅎ 𝑡 𝑌 | 
						
							| 4 |  | stoweidlem42.4 | ⊢ 𝑃  =  ( 𝑓  ∈  𝑌 ,  𝑔  ∈  𝑌  ↦  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) ) ) | 
						
							| 5 |  | stoweidlem42.5 | ⊢ 𝑋  =  ( seq 1 ( 𝑃 ,  𝑈 ) ‘ 𝑀 ) | 
						
							| 6 |  | stoweidlem42.6 | ⊢ 𝐹  =  ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 7 |  | stoweidlem42.7 | ⊢ 𝑍  =  ( 𝑡  ∈  𝑇  ↦  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 8 |  | stoweidlem42.8 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 9 |  | stoweidlem42.9 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑀 ) ⟶ 𝑌 ) | 
						
							| 10 |  | stoweidlem42.10 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ∀ 𝑡  ∈  𝐵 ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 11 |  | stoweidlem42.11 | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 12 |  | stoweidlem42.12 | ⊢ ( 𝜑  →  𝐸  <  ( 1  /  3 ) ) | 
						
							| 13 |  | stoweidlem42.13 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  →  𝑓 : 𝑇 ⟶ ℝ ) | 
						
							| 14 |  | stoweidlem42.14 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  𝑌  ∧  𝑔  ∈  𝑌 )  →  ( 𝑡  ∈  𝑇  ↦  ( ( 𝑓 ‘ 𝑡 )  ·  ( 𝑔 ‘ 𝑡 ) ) )  ∈  𝑌 ) | 
						
							| 15 |  | stoweidlem42.15 | ⊢ ( 𝜑  →  𝑇  ∈  V ) | 
						
							| 16 |  | stoweidlem42.16 | ⊢ ( 𝜑  →  𝐵  ⊆  𝑇 ) | 
						
							| 17 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 18 | 11 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 19 | 17 18 | resubcld | ⊢ ( 𝜑  →  ( 1  −  𝐸 )  ∈  ℝ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  𝐸 )  ∈  ℝ ) | 
						
							| 21 | 18 8 | nndivred | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ∈  ℝ ) | 
						
							| 22 | 17 21 | resubcld | ⊢ ( 𝜑  →  ( 1  −  ( 𝐸  /  𝑀 ) )  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  ∈  ℝ ) | 
						
							| 24 | 8 | nnnn0d | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 26 | 23 25 | reexpcld | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( ( 1  −  ( 𝐸  /  𝑀 ) ) ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 27 |  | elnnuz | ⊢ ( 𝑀  ∈  ℕ  ↔  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 28 | 8 27 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 30 |  | nfv | ⊢ Ⅎ 𝑖 𝑡  ∈  𝐵 | 
						
							| 31 | 1 30 | nfan | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑡  ∈  𝐵 ) | 
						
							| 32 |  | nfv | ⊢ Ⅎ 𝑖 𝑎  ∈  ( 1 ... 𝑀 ) | 
						
							| 33 | 31 32 | nfan | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑎  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 34 |  | nfcv | ⊢ Ⅎ 𝑖 𝑇 | 
						
							| 35 |  | nfmpt1 | ⊢ Ⅎ 𝑖 ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 36 | 34 35 | nfmpt | ⊢ Ⅎ 𝑖 ( 𝑡  ∈  𝑇  ↦  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 37 | 6 36 | nfcxfr | ⊢ Ⅎ 𝑖 𝐹 | 
						
							| 38 |  | nfcv | ⊢ Ⅎ 𝑖 𝑡 | 
						
							| 39 | 37 38 | nffv | ⊢ Ⅎ 𝑖 ( 𝐹 ‘ 𝑡 ) | 
						
							| 40 |  | nfcv | ⊢ Ⅎ 𝑖 𝑎 | 
						
							| 41 | 39 40 | nffv | ⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) | 
						
							| 42 | 41 | nfel1 | ⊢ Ⅎ 𝑖 ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 )  ∈  ℝ | 
						
							| 43 | 33 42 | nfim | ⊢ Ⅎ 𝑖 ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 44 |  | eleq1 | ⊢ ( 𝑖  =  𝑎  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↔  𝑎  ∈  ( 1 ... 𝑀 ) ) ) | 
						
							| 45 | 44 | anbi2d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ↔  ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑎  ∈  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑖  =  𝑎  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 ) ) | 
						
							| 47 | 46 | eleq1d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  ∈  ℝ  ↔  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 )  ∈  ℝ ) ) | 
						
							| 48 | 45 47 | imbi12d | ⊢ ( 𝑖  =  𝑎  →  ( ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  ∈  ℝ )  ↔  ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 )  ∈  ℝ ) ) ) | 
						
							| 49 | 16 | sselda | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  𝑡  ∈  𝑇 ) | 
						
							| 50 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 51 |  | mptexg | ⊢ ( ( 1 ... 𝑀 )  ∈  V  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V ) | 
						
							| 52 | 50 51 | mp1i | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V ) | 
						
							| 53 | 6 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  ∈  V )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 54 | 49 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑡 )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) ) | 
						
							| 55 | 9 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 ) | 
						
							| 56 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝜑 ) | 
						
							| 57 | 56 55 | jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 ) ) | 
						
							| 58 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( 𝑓  ∈  𝑌  ↔  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 ) ) | 
						
							| 59 | 58 | anbi2d | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  ↔  ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 ) ) ) | 
						
							| 60 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( 𝑓 : 𝑇 ⟶ ℝ  ↔  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 61 | 59 60 | imbi12d | ⊢ ( 𝑓  =  ( 𝑈 ‘ 𝑖 )  →  ( ( ( 𝜑  ∧  𝑓  ∈  𝑌 )  →  𝑓 : 𝑇 ⟶ ℝ )  ↔  ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) ) | 
						
							| 62 | 61 13 | vtoclg | ⊢ ( ( 𝑈 ‘ 𝑖 )  ∈  𝑌  →  ( ( 𝜑  ∧  ( 𝑈 ‘ 𝑖 )  ∈  𝑌 )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) ) | 
						
							| 63 | 55 57 62 | sylc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 64 | 63 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 𝑈 ‘ 𝑖 ) : 𝑇 ⟶ ℝ ) | 
						
							| 65 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  𝑡  ∈  𝑇 ) | 
						
							| 66 | 64 65 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 )  ∈  ℝ ) | 
						
							| 67 | 54 66 | fvmpt2d | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 68 | 67 66 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 )  ∈  ℝ ) | 
						
							| 69 | 43 48 68 | chvarfv | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑎  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 70 |  | remulcl | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  ( 𝑎  ∈  ℝ  ∧  𝑗  ∈  ℝ ) )  →  ( 𝑎  ·  𝑗 )  ∈  ℝ ) | 
						
							| 72 | 29 69 71 | seqcl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 )  ∈  ℝ ) | 
						
							| 73 | 11 | rpcnd | ⊢ ( 𝜑  →  𝐸  ∈  ℂ ) | 
						
							| 74 | 8 | nncnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 75 | 8 | nnne0d | ⊢ ( 𝜑  →  𝑀  ≠  0 ) | 
						
							| 76 | 73 74 75 | divcan1d | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑀 )  ·  𝑀 )  =  𝐸 ) | 
						
							| 77 | 76 | eqcomd | ⊢ ( 𝜑  →  𝐸  =  ( ( 𝐸  /  𝑀 )  ·  𝑀 ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( 𝜑  →  ( 1  −  𝐸 )  =  ( 1  −  ( ( 𝐸  /  𝑀 )  ·  𝑀 ) ) ) | 
						
							| 79 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 80 | 73 74 75 | divcld | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ∈  ℂ ) | 
						
							| 81 | 80 74 | mulcld | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑀 )  ·  𝑀 )  ∈  ℂ ) | 
						
							| 82 | 79 81 | negsubd | ⊢ ( 𝜑  →  ( 1  +  - ( ( 𝐸  /  𝑀 )  ·  𝑀 ) )  =  ( 1  −  ( ( 𝐸  /  𝑀 )  ·  𝑀 ) ) ) | 
						
							| 83 | 80 74 | mulneg1d | ⊢ ( 𝜑  →  ( - ( 𝐸  /  𝑀 )  ·  𝑀 )  =  - ( ( 𝐸  /  𝑀 )  ·  𝑀 ) ) | 
						
							| 84 | 83 | eqcomd | ⊢ ( 𝜑  →  - ( ( 𝐸  /  𝑀 )  ·  𝑀 )  =  ( - ( 𝐸  /  𝑀 )  ·  𝑀 ) ) | 
						
							| 85 | 84 | oveq2d | ⊢ ( 𝜑  →  ( 1  +  - ( ( 𝐸  /  𝑀 )  ·  𝑀 ) )  =  ( 1  +  ( - ( 𝐸  /  𝑀 )  ·  𝑀 ) ) ) | 
						
							| 86 | 78 82 85 | 3eqtr2d | ⊢ ( 𝜑  →  ( 1  −  𝐸 )  =  ( 1  +  ( - ( 𝐸  /  𝑀 )  ·  𝑀 ) ) ) | 
						
							| 87 | 21 | renegcld | ⊢ ( 𝜑  →  - ( 𝐸  /  𝑀 )  ∈  ℝ ) | 
						
							| 88 | 8 | nnred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 89 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 90 | 89 | a1i | ⊢ ( 𝜑  →  3  ∈  ℝ ) | 
						
							| 91 |  | 3ne0 | ⊢ 3  ≠  0 | 
						
							| 92 | 91 | a1i | ⊢ ( 𝜑  →  3  ≠  0 ) | 
						
							| 93 | 90 92 | rereccld | ⊢ ( 𝜑  →  ( 1  /  3 )  ∈  ℝ ) | 
						
							| 94 |  | 1lt3 | ⊢ 1  <  3 | 
						
							| 95 | 94 | a1i | ⊢ ( 𝜑  →  1  <  3 ) | 
						
							| 96 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 97 | 96 | a1i | ⊢ ( 𝜑  →  0  <  1 ) | 
						
							| 98 |  | 3pos | ⊢ 0  <  3 | 
						
							| 99 | 98 | a1i | ⊢ ( 𝜑  →  0  <  3 ) | 
						
							| 100 |  | ltdiv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 3  ∈  ℝ  ∧  0  <  3 )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 ) )  →  ( 1  <  3  ↔  ( 1  /  3 )  <  ( 1  /  1 ) ) ) | 
						
							| 101 | 17 97 90 99 17 97 100 | syl222anc | ⊢ ( 𝜑  →  ( 1  <  3  ↔  ( 1  /  3 )  <  ( 1  /  1 ) ) ) | 
						
							| 102 | 95 101 | mpbid | ⊢ ( 𝜑  →  ( 1  /  3 )  <  ( 1  /  1 ) ) | 
						
							| 103 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 104 | 102 103 | breqtrdi | ⊢ ( 𝜑  →  ( 1  /  3 )  <  1 ) | 
						
							| 105 | 18 93 17 12 104 | lttrd | ⊢ ( 𝜑  →  𝐸  <  1 ) | 
						
							| 106 | 8 | nnge1d | ⊢ ( 𝜑  →  1  ≤  𝑀 ) | 
						
							| 107 | 18 17 88 105 106 | ltletrd | ⊢ ( 𝜑  →  𝐸  <  𝑀 ) | 
						
							| 108 | 18 88 107 | ltled | ⊢ ( 𝜑  →  𝐸  ≤  𝑀 ) | 
						
							| 109 | 11 | rpregt0d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) ) | 
						
							| 110 | 8 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑀 ) | 
						
							| 111 |  | lediv2 | ⊢ ( ( ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 )  ∧  ( 𝑀  ∈  ℝ  ∧  0  <  𝑀 )  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( 𝐸  ≤  𝑀  ↔  ( 𝐸  /  𝑀 )  ≤  ( 𝐸  /  𝐸 ) ) ) | 
						
							| 112 | 109 88 110 109 111 | syl121anc | ⊢ ( 𝜑  →  ( 𝐸  ≤  𝑀  ↔  ( 𝐸  /  𝑀 )  ≤  ( 𝐸  /  𝐸 ) ) ) | 
						
							| 113 | 108 112 | mpbid | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ≤  ( 𝐸  /  𝐸 ) ) | 
						
							| 114 | 11 | rpcnne0d | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℂ  ∧  𝐸  ≠  0 ) ) | 
						
							| 115 |  | divid | ⊢ ( ( 𝐸  ∈  ℂ  ∧  𝐸  ≠  0 )  →  ( 𝐸  /  𝐸 )  =  1 ) | 
						
							| 116 | 114 115 | syl | ⊢ ( 𝜑  →  ( 𝐸  /  𝐸 )  =  1 ) | 
						
							| 117 | 113 116 | breqtrd | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ≤  1 ) | 
						
							| 118 | 21 17 | lenegd | ⊢ ( 𝜑  →  ( ( 𝐸  /  𝑀 )  ≤  1  ↔  - 1  ≤  - ( 𝐸  /  𝑀 ) ) ) | 
						
							| 119 | 117 118 | mpbid | ⊢ ( 𝜑  →  - 1  ≤  - ( 𝐸  /  𝑀 ) ) | 
						
							| 120 |  | bernneq | ⊢ ( ( - ( 𝐸  /  𝑀 )  ∈  ℝ  ∧  𝑀  ∈  ℕ0  ∧  - 1  ≤  - ( 𝐸  /  𝑀 ) )  →  ( 1  +  ( - ( 𝐸  /  𝑀 )  ·  𝑀 ) )  ≤  ( ( 1  +  - ( 𝐸  /  𝑀 ) ) ↑ 𝑀 ) ) | 
						
							| 121 | 87 24 119 120 | syl3anc | ⊢ ( 𝜑  →  ( 1  +  ( - ( 𝐸  /  𝑀 )  ·  𝑀 ) )  ≤  ( ( 1  +  - ( 𝐸  /  𝑀 ) ) ↑ 𝑀 ) ) | 
						
							| 122 | 79 80 | negsubd | ⊢ ( 𝜑  →  ( 1  +  - ( 𝐸  /  𝑀 ) )  =  ( 1  −  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 123 | 122 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  +  - ( 𝐸  /  𝑀 ) ) ↑ 𝑀 )  =  ( ( 1  −  ( 𝐸  /  𝑀 ) ) ↑ 𝑀 ) ) | 
						
							| 124 | 121 123 | breqtrd | ⊢ ( 𝜑  →  ( 1  +  ( - ( 𝐸  /  𝑀 )  ·  𝑀 ) )  ≤  ( ( 1  −  ( 𝐸  /  𝑀 ) ) ↑ 𝑀 ) ) | 
						
							| 125 | 86 124 | eqbrtrd | ⊢ ( 𝜑  →  ( 1  −  𝐸 )  ≤  ( ( 1  −  ( 𝐸  /  𝑀 ) ) ↑ 𝑀 ) ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  𝐸 )  ≤  ( ( 1  −  ( 𝐸  /  𝑀 ) ) ↑ 𝑀 ) ) | 
						
							| 127 |  | eqid | ⊢ seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) )  =  seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) | 
						
							| 128 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  𝑀  ∈  ℕ ) | 
						
							| 129 |  | eqid | ⊢ ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) )  =  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 130 | 31 66 129 | fmptdf | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 131 | 54 | feq1d | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ  ↔  ( 𝑖  ∈  ( 1 ... 𝑀 )  ↦  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) : ( 1 ... 𝑀 ) ⟶ ℝ ) ) | 
						
							| 132 | 130 131 | mpbird | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ℝ ) | 
						
							| 133 | 10 | r19.21bi | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 134 | 133 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑡 ) ) | 
						
							| 135 | 134 67 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  ∧  𝑖  ∈  ( 1 ... 𝑀 ) )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  <  ( ( 𝐹 ‘ 𝑡 ) ‘ 𝑖 ) ) | 
						
							| 136 | 80 | addlidd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐸  /  𝑀 ) )  =  ( 𝐸  /  𝑀 ) ) | 
						
							| 137 |  | lediv2 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝑀  ∈  ℝ  ∧  0  <  𝑀 )  ∧  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸 ) )  →  ( 1  ≤  𝑀  ↔  ( 𝐸  /  𝑀 )  ≤  ( 𝐸  /  1 ) ) ) | 
						
							| 138 | 17 97 88 110 109 137 | syl221anc | ⊢ ( 𝜑  →  ( 1  ≤  𝑀  ↔  ( 𝐸  /  𝑀 )  ≤  ( 𝐸  /  1 ) ) ) | 
						
							| 139 | 106 138 | mpbid | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ≤  ( 𝐸  /  1 ) ) | 
						
							| 140 | 73 | div1d | ⊢ ( 𝜑  →  ( 𝐸  /  1 )  =  𝐸 ) | 
						
							| 141 | 139 140 | breqtrd | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  ≤  𝐸 ) | 
						
							| 142 | 21 18 17 141 105 | lelttrd | ⊢ ( 𝜑  →  ( 𝐸  /  𝑀 )  <  1 ) | 
						
							| 143 | 136 142 | eqbrtrd | ⊢ ( 𝜑  →  ( 0  +  ( 𝐸  /  𝑀 ) )  <  1 ) | 
						
							| 144 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 145 | 144 21 17 | ltaddsubd | ⊢ ( 𝜑  →  ( ( 0  +  ( 𝐸  /  𝑀 ) )  <  1  ↔  0  <  ( 1  −  ( 𝐸  /  𝑀 ) ) ) ) | 
						
							| 146 | 143 145 | mpbid | ⊢ ( 𝜑  →  0  <  ( 1  −  ( 𝐸  /  𝑀 ) ) ) | 
						
							| 147 | 22 146 | elrpd | ⊢ ( 𝜑  →  ( 1  −  ( 𝐸  /  𝑀 ) )  ∈  ℝ+ ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  ( 𝐸  /  𝑀 ) )  ∈  ℝ+ ) | 
						
							| 149 | 39 31 127 128 132 135 148 | stoweidlem3 | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( ( 1  −  ( 𝐸  /  𝑀 ) ) ↑ 𝑀 )  <  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 150 | 20 26 72 126 149 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  𝐸 )  <  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 151 | 7 | fvmpt2 | ⊢ ( ( 𝑡  ∈  𝑇  ∧  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 )  ∈  ℝ )  →  ( 𝑍 ‘ 𝑡 )  =  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 152 | 49 72 151 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 𝑍 ‘ 𝑡 )  =  ( seq 1 (  ·  ,  ( 𝐹 ‘ 𝑡 ) ) ‘ 𝑀 ) ) | 
						
							| 153 | 150 152 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  𝐸 )  <  ( 𝑍 ‘ 𝑡 ) ) | 
						
							| 154 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  𝜑 ) | 
						
							| 155 | 1 3 4 5 6 7 15 8 9 13 14 | fmuldfeq | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝑇 )  →  ( 𝑋 ‘ 𝑡 )  =  ( 𝑍 ‘ 𝑡 ) ) | 
						
							| 156 | 154 49 155 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 𝑋 ‘ 𝑡 )  =  ( 𝑍 ‘ 𝑡 ) ) | 
						
							| 157 | 153 156 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑡  ∈  𝐵 )  →  ( 1  −  𝐸 )  <  ( 𝑋 ‘ 𝑡 ) ) | 
						
							| 158 | 157 | ex | ⊢ ( 𝜑  →  ( 𝑡  ∈  𝐵  →  ( 1  −  𝐸 )  <  ( 𝑋 ‘ 𝑡 ) ) ) | 
						
							| 159 | 2 158 | ralrimi | ⊢ ( 𝜑  →  ∀ 𝑡  ∈  𝐵 ( 1  −  𝐸 )  <  ( 𝑋 ‘ 𝑡 ) ) |