Metamath Proof Explorer


Theorem stoweidlem43

Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p_t in the subalgebra, such that p_t( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Hera Z is used for t_0 , S is used for t e. T - U , h is used for p_t. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem43.1
|- F/ g ph
stoweidlem43.2
|- F/ t ph
stoweidlem43.3
|- F/_ h Q
stoweidlem43.4
|- K = ( topGen ` ran (,) )
stoweidlem43.5
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) }
stoweidlem43.6
|- T = U. J
stoweidlem43.7
|- ( ph -> J e. Comp )
stoweidlem43.8
|- ( ph -> A C_ ( J Cn K ) )
stoweidlem43.9
|- ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) + ( l ` t ) ) ) e. A )
stoweidlem43.10
|- ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A )
stoweidlem43.11
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
stoweidlem43.12
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) )
stoweidlem43.13
|- ( ph -> U e. J )
stoweidlem43.14
|- ( ph -> Z e. U )
stoweidlem43.15
|- ( ph -> S e. ( T \ U ) )
Assertion stoweidlem43
|- ( ph -> E. h ( h e. Q /\ 0 < ( h ` S ) ) )

Proof

Step Hyp Ref Expression
1 stoweidlem43.1
 |-  F/ g ph
2 stoweidlem43.2
 |-  F/ t ph
3 stoweidlem43.3
 |-  F/_ h Q
4 stoweidlem43.4
 |-  K = ( topGen ` ran (,) )
5 stoweidlem43.5
 |-  Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) }
6 stoweidlem43.6
 |-  T = U. J
7 stoweidlem43.7
 |-  ( ph -> J e. Comp )
8 stoweidlem43.8
 |-  ( ph -> A C_ ( J Cn K ) )
9 stoweidlem43.9
 |-  ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) + ( l ` t ) ) ) e. A )
10 stoweidlem43.10
 |-  ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A )
11 stoweidlem43.11
 |-  ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A )
12 stoweidlem43.12
 |-  ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) )
13 stoweidlem43.13
 |-  ( ph -> U e. J )
14 stoweidlem43.14
 |-  ( ph -> Z e. U )
15 stoweidlem43.15
 |-  ( ph -> S e. ( T \ U ) )
16 nfv
 |-  F/ g E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 )
17 15 eldifad
 |-  ( ph -> S e. T )
18 elunii
 |-  ( ( Z e. U /\ U e. J ) -> Z e. U. J )
19 14 13 18 syl2anc
 |-  ( ph -> Z e. U. J )
20 19 6 eleqtrrdi
 |-  ( ph -> Z e. T )
21 15 eldifbd
 |-  ( ph -> -. S e. U )
22 nelne2
 |-  ( ( Z e. U /\ -. S e. U ) -> Z =/= S )
23 14 21 22 syl2anc
 |-  ( ph -> Z =/= S )
24 23 necomd
 |-  ( ph -> S =/= Z )
25 17 20 24 3jca
 |-  ( ph -> ( S e. T /\ Z e. T /\ S =/= Z ) )
26 simpr2
 |-  ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> Z e. T )
27 nfv
 |-  F/ t ( S e. T /\ Z e. T /\ S =/= Z )
28 2 27 nfan
 |-  F/ t ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) )
29 nfv
 |-  F/ t E. g e. A ( g ` S ) =/= ( g ` Z )
30 28 29 nfim
 |-  F/ t ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) )
31 eleq1
 |-  ( t = Z -> ( t e. T <-> Z e. T ) )
32 neeq2
 |-  ( t = Z -> ( S =/= t <-> S =/= Z ) )
33 31 32 3anbi23d
 |-  ( t = Z -> ( ( S e. T /\ t e. T /\ S =/= t ) <-> ( S e. T /\ Z e. T /\ S =/= Z ) ) )
34 33 anbi2d
 |-  ( t = Z -> ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) <-> ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) ) )
35 fveq2
 |-  ( t = Z -> ( g ` t ) = ( g ` Z ) )
36 35 neeq2d
 |-  ( t = Z -> ( ( g ` S ) =/= ( g ` t ) <-> ( g ` S ) =/= ( g ` Z ) ) )
37 36 rexbidv
 |-  ( t = Z -> ( E. g e. A ( g ` S ) =/= ( g ` t ) <-> E. g e. A ( g ` S ) =/= ( g ` Z ) ) )
38 34 37 imbi12d
 |-  ( t = Z -> ( ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) <-> ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) ) ) )
39 simpr1
 |-  ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> S e. T )
40 eleq1
 |-  ( r = S -> ( r e. T <-> S e. T ) )
41 neeq1
 |-  ( r = S -> ( r =/= t <-> S =/= t ) )
42 40 41 3anbi13d
 |-  ( r = S -> ( ( r e. T /\ t e. T /\ r =/= t ) <-> ( S e. T /\ t e. T /\ S =/= t ) ) )
43 42 anbi2d
 |-  ( r = S -> ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) <-> ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) ) )
44 fveq2
 |-  ( r = S -> ( g ` r ) = ( g ` S ) )
45 44 neeq1d
 |-  ( r = S -> ( ( g ` r ) =/= ( g ` t ) <-> ( g ` S ) =/= ( g ` t ) ) )
46 45 rexbidv
 |-  ( r = S -> ( E. g e. A ( g ` r ) =/= ( g ` t ) <-> E. g e. A ( g ` S ) =/= ( g ` t ) ) )
47 43 46 imbi12d
 |-  ( r = S -> ( ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) ) <-> ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) ) )
48 12 a1i
 |-  ( r e. T -> ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) ) )
49 47 48 vtoclga
 |-  ( S e. T -> ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) )
50 39 49 mpcom
 |-  ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) )
51 30 38 50 vtoclg1f
 |-  ( Z e. T -> ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) ) )
52 26 51 mpcom
 |-  ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) )
53 df-rex
 |-  ( E. g e. A ( g ` S ) =/= ( g ` Z ) <-> E. g ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) )
54 52 53 sylib
 |-  ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) )
55 25 54 mpdan
 |-  ( ph -> E. g ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) )
56 nfv
 |-  F/ t ( g e. A /\ ( g ` S ) =/= ( g ` Z ) )
57 2 56 nfan
 |-  F/ t ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) )
58 nfcv
 |-  F/_ t g
59 eqid
 |-  ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) )
60 eqid
 |-  ( J Cn K ) = ( J Cn K )
61 8 sselda
 |-  ( ( ph /\ f e. A ) -> f e. ( J Cn K ) )
62 4 6 60 61 fcnre
 |-  ( ( ph /\ f e. A ) -> f : T --> RR )
63 62 adantlr
 |-  ( ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) /\ f e. A ) -> f : T --> RR )
64 9 3adant1r
 |-  ( ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) + ( l ` t ) ) ) e. A )
65 11 adantlr
 |-  ( ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A )
66 17 adantr
 |-  ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> S e. T )
67 20 adantr
 |-  ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> Z e. T )
68 simprl
 |-  ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> g e. A )
69 simprr
 |-  ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> ( g ` S ) =/= ( g ` Z ) )
70 57 58 59 63 64 65 66 67 68 69 stoweidlem23
 |-  ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) )
71 eleq1
 |-  ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( f e. A <-> ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A ) )
72 fveq1
 |-  ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( f ` S ) = ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) )
73 fveq1
 |-  ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( f ` Z ) = ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) )
74 72 73 neeq12d
 |-  ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( ( f ` S ) =/= ( f ` Z ) <-> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) ) )
75 73 eqeq1d
 |-  ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( ( f ` Z ) = 0 <-> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) )
76 71 74 75 3anbi123d
 |-  ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) <-> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) ) )
77 76 spcegv
 |-  ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A -> ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) )
78 77 3ad2ant1
 |-  ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) )
79 78 pm2.43i
 |-  ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) )
80 70 79 syl
 |-  ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) )
81 1 16 55 80 exlimdd
 |-  ( ph -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) )
82 nfmpt1
 |-  F/_ t ( t e. T |-> ( ( ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) ` t ) / sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) ) )
83 nfcv
 |-  F/_ t f
84 nfcv
 |-  F/_ t ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) )
85 nfv
 |-  F/ t ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 )
86 2 85 nfan
 |-  F/ t ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) )
87 fveq2
 |-  ( s = t -> ( f ` s ) = ( f ` t ) )
88 87 87 oveq12d
 |-  ( s = t -> ( ( f ` s ) x. ( f ` s ) ) = ( ( f ` t ) x. ( f ` t ) ) )
89 88 cbvmptv
 |-  ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) = ( t e. T |-> ( ( f ` t ) x. ( f ` t ) ) )
90 eqid
 |-  sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) = sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < )
91 eqid
 |-  ( t e. T |-> ( ( ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) ` t ) / sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) ) ) = ( t e. T |-> ( ( ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) ` t ) / sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) ) )
92 7 adantr
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> J e. Comp )
93 8 adantr
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> A C_ ( J Cn K ) )
94 eleq1
 |-  ( f = k -> ( f e. A <-> k e. A ) )
95 94 3anbi2d
 |-  ( f = k -> ( ( ph /\ f e. A /\ l e. A ) <-> ( ph /\ k e. A /\ l e. A ) ) )
96 fveq1
 |-  ( f = k -> ( f ` t ) = ( k ` t ) )
97 96 oveq1d
 |-  ( f = k -> ( ( f ` t ) x. ( l ` t ) ) = ( ( k ` t ) x. ( l ` t ) ) )
98 97 mpteq2dv
 |-  ( f = k -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) = ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) )
99 98 eleq1d
 |-  ( f = k -> ( ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A <-> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A ) )
100 95 99 imbi12d
 |-  ( f = k -> ( ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A ) <-> ( ( ph /\ k e. A /\ l e. A ) -> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A ) ) )
101 100 10 chvarvv
 |-  ( ( ph /\ k e. A /\ l e. A ) -> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A )
102 101 3adant1r
 |-  ( ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) /\ k e. A /\ l e. A ) -> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A )
103 11 adantlr
 |-  ( ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A )
104 17 adantr
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> S e. T )
105 20 adantr
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> Z e. T )
106 simpr1
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> f e. A )
107 simpr2
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> ( f ` S ) =/= ( f ` Z ) )
108 simpr3
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> ( f ` Z ) = 0 )
109 3 82 83 84 86 4 5 6 89 90 91 92 93 102 103 104 105 106 107 108 stoweidlem36
 |-  ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) )
110 109 ex
 |-  ( ph -> ( ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) )
111 110 exlimdv
 |-  ( ph -> ( E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) )
112 81 111 mpd
 |-  ( ph -> E. h ( h e. Q /\ 0 < ( h ` S ) ) )