| Step |
Hyp |
Ref |
Expression |
| 1 |
|
stoweidlem43.1 |
|- F/ g ph |
| 2 |
|
stoweidlem43.2 |
|- F/ t ph |
| 3 |
|
stoweidlem43.3 |
|- F/_ h Q |
| 4 |
|
stoweidlem43.4 |
|- K = ( topGen ` ran (,) ) |
| 5 |
|
stoweidlem43.5 |
|- Q = { h e. A | ( ( h ` Z ) = 0 /\ A. t e. T ( 0 <_ ( h ` t ) /\ ( h ` t ) <_ 1 ) ) } |
| 6 |
|
stoweidlem43.6 |
|- T = U. J |
| 7 |
|
stoweidlem43.7 |
|- ( ph -> J e. Comp ) |
| 8 |
|
stoweidlem43.8 |
|- ( ph -> A C_ ( J Cn K ) ) |
| 9 |
|
stoweidlem43.9 |
|- ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) + ( l ` t ) ) ) e. A ) |
| 10 |
|
stoweidlem43.10 |
|- ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A ) |
| 11 |
|
stoweidlem43.11 |
|- ( ( ph /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 12 |
|
stoweidlem43.12 |
|- ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) ) |
| 13 |
|
stoweidlem43.13 |
|- ( ph -> U e. J ) |
| 14 |
|
stoweidlem43.14 |
|- ( ph -> Z e. U ) |
| 15 |
|
stoweidlem43.15 |
|- ( ph -> S e. ( T \ U ) ) |
| 16 |
|
nfv |
|- F/ g E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) |
| 17 |
15
|
eldifad |
|- ( ph -> S e. T ) |
| 18 |
|
elunii |
|- ( ( Z e. U /\ U e. J ) -> Z e. U. J ) |
| 19 |
14 13 18
|
syl2anc |
|- ( ph -> Z e. U. J ) |
| 20 |
19 6
|
eleqtrrdi |
|- ( ph -> Z e. T ) |
| 21 |
15
|
eldifbd |
|- ( ph -> -. S e. U ) |
| 22 |
|
nelne2 |
|- ( ( Z e. U /\ -. S e. U ) -> Z =/= S ) |
| 23 |
14 21 22
|
syl2anc |
|- ( ph -> Z =/= S ) |
| 24 |
23
|
necomd |
|- ( ph -> S =/= Z ) |
| 25 |
17 20 24
|
3jca |
|- ( ph -> ( S e. T /\ Z e. T /\ S =/= Z ) ) |
| 26 |
|
simpr2 |
|- ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> Z e. T ) |
| 27 |
|
nfv |
|- F/ t ( S e. T /\ Z e. T /\ S =/= Z ) |
| 28 |
2 27
|
nfan |
|- F/ t ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) |
| 29 |
|
nfv |
|- F/ t E. g e. A ( g ` S ) =/= ( g ` Z ) |
| 30 |
28 29
|
nfim |
|- F/ t ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) ) |
| 31 |
|
eleq1 |
|- ( t = Z -> ( t e. T <-> Z e. T ) ) |
| 32 |
|
neeq2 |
|- ( t = Z -> ( S =/= t <-> S =/= Z ) ) |
| 33 |
31 32
|
3anbi23d |
|- ( t = Z -> ( ( S e. T /\ t e. T /\ S =/= t ) <-> ( S e. T /\ Z e. T /\ S =/= Z ) ) ) |
| 34 |
33
|
anbi2d |
|- ( t = Z -> ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) <-> ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) ) ) |
| 35 |
|
fveq2 |
|- ( t = Z -> ( g ` t ) = ( g ` Z ) ) |
| 36 |
35
|
neeq2d |
|- ( t = Z -> ( ( g ` S ) =/= ( g ` t ) <-> ( g ` S ) =/= ( g ` Z ) ) ) |
| 37 |
36
|
rexbidv |
|- ( t = Z -> ( E. g e. A ( g ` S ) =/= ( g ` t ) <-> E. g e. A ( g ` S ) =/= ( g ` Z ) ) ) |
| 38 |
34 37
|
imbi12d |
|- ( t = Z -> ( ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) <-> ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) ) ) ) |
| 39 |
|
simpr1 |
|- ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> S e. T ) |
| 40 |
|
eleq1 |
|- ( r = S -> ( r e. T <-> S e. T ) ) |
| 41 |
|
neeq1 |
|- ( r = S -> ( r =/= t <-> S =/= t ) ) |
| 42 |
40 41
|
3anbi13d |
|- ( r = S -> ( ( r e. T /\ t e. T /\ r =/= t ) <-> ( S e. T /\ t e. T /\ S =/= t ) ) ) |
| 43 |
42
|
anbi2d |
|- ( r = S -> ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) <-> ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) ) ) |
| 44 |
|
fveq2 |
|- ( r = S -> ( g ` r ) = ( g ` S ) ) |
| 45 |
44
|
neeq1d |
|- ( r = S -> ( ( g ` r ) =/= ( g ` t ) <-> ( g ` S ) =/= ( g ` t ) ) ) |
| 46 |
45
|
rexbidv |
|- ( r = S -> ( E. g e. A ( g ` r ) =/= ( g ` t ) <-> E. g e. A ( g ` S ) =/= ( g ` t ) ) ) |
| 47 |
43 46
|
imbi12d |
|- ( r = S -> ( ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) ) <-> ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) ) ) |
| 48 |
12
|
a1i |
|- ( r e. T -> ( ( ph /\ ( r e. T /\ t e. T /\ r =/= t ) ) -> E. g e. A ( g ` r ) =/= ( g ` t ) ) ) |
| 49 |
47 48
|
vtoclga |
|- ( S e. T -> ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) ) |
| 50 |
39 49
|
mpcom |
|- ( ( ph /\ ( S e. T /\ t e. T /\ S =/= t ) ) -> E. g e. A ( g ` S ) =/= ( g ` t ) ) |
| 51 |
30 38 50
|
vtoclg1f |
|- ( Z e. T -> ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) ) ) |
| 52 |
26 51
|
mpcom |
|- ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g e. A ( g ` S ) =/= ( g ` Z ) ) |
| 53 |
|
df-rex |
|- ( E. g e. A ( g ` S ) =/= ( g ` Z ) <-> E. g ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) |
| 54 |
52 53
|
sylib |
|- ( ( ph /\ ( S e. T /\ Z e. T /\ S =/= Z ) ) -> E. g ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) |
| 55 |
25 54
|
mpdan |
|- ( ph -> E. g ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) |
| 56 |
|
nfv |
|- F/ t ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) |
| 57 |
2 56
|
nfan |
|- F/ t ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) |
| 58 |
|
nfcv |
|- F/_ t g |
| 59 |
|
eqid |
|- ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) |
| 60 |
|
eqid |
|- ( J Cn K ) = ( J Cn K ) |
| 61 |
8
|
sselda |
|- ( ( ph /\ f e. A ) -> f e. ( J Cn K ) ) |
| 62 |
4 6 60 61
|
fcnre |
|- ( ( ph /\ f e. A ) -> f : T --> RR ) |
| 63 |
62
|
adantlr |
|- ( ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) /\ f e. A ) -> f : T --> RR ) |
| 64 |
9
|
3adant1r |
|- ( ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) + ( l ` t ) ) ) e. A ) |
| 65 |
11
|
adantlr |
|- ( ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 66 |
17
|
adantr |
|- ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> S e. T ) |
| 67 |
20
|
adantr |
|- ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> Z e. T ) |
| 68 |
|
simprl |
|- ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> g e. A ) |
| 69 |
|
simprr |
|- ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> ( g ` S ) =/= ( g ` Z ) ) |
| 70 |
57 58 59 63 64 65 66 67 68 69
|
stoweidlem23 |
|- ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) ) |
| 71 |
|
eleq1 |
|- ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( f e. A <-> ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A ) ) |
| 72 |
|
fveq1 |
|- ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( f ` S ) = ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) ) |
| 73 |
|
fveq1 |
|- ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( f ` Z ) = ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) ) |
| 74 |
72 73
|
neeq12d |
|- ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( ( f ` S ) =/= ( f ` Z ) <-> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) ) ) |
| 75 |
73
|
eqeq1d |
|- ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( ( f ` Z ) = 0 <-> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) ) |
| 76 |
71 74 75
|
3anbi123d |
|- ( f = ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) -> ( ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) <-> ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) ) ) |
| 77 |
76
|
spcegv |
|- ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A -> ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) ) |
| 78 |
77
|
3ad2ant1 |
|- ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) ) |
| 79 |
78
|
pm2.43i |
|- ( ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) e. A /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` S ) =/= ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) /\ ( ( t e. T |-> ( ( g ` t ) - ( g ` Z ) ) ) ` Z ) = 0 ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) |
| 80 |
70 79
|
syl |
|- ( ( ph /\ ( g e. A /\ ( g ` S ) =/= ( g ` Z ) ) ) -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) |
| 81 |
1 16 55 80
|
exlimdd |
|- ( ph -> E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) |
| 82 |
|
nfmpt1 |
|- F/_ t ( t e. T |-> ( ( ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) ` t ) / sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) ) ) |
| 83 |
|
nfcv |
|- F/_ t f |
| 84 |
|
nfcv |
|- F/_ t ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) |
| 85 |
|
nfv |
|- F/ t ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) |
| 86 |
2 85
|
nfan |
|- F/ t ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) |
| 87 |
|
fveq2 |
|- ( s = t -> ( f ` s ) = ( f ` t ) ) |
| 88 |
87 87
|
oveq12d |
|- ( s = t -> ( ( f ` s ) x. ( f ` s ) ) = ( ( f ` t ) x. ( f ` t ) ) ) |
| 89 |
88
|
cbvmptv |
|- ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) = ( t e. T |-> ( ( f ` t ) x. ( f ` t ) ) ) |
| 90 |
|
eqid |
|- sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) = sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) |
| 91 |
|
eqid |
|- ( t e. T |-> ( ( ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) ` t ) / sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) ) ) = ( t e. T |-> ( ( ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) ` t ) / sup ( ran ( s e. T |-> ( ( f ` s ) x. ( f ` s ) ) ) , RR , < ) ) ) |
| 92 |
7
|
adantr |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> J e. Comp ) |
| 93 |
8
|
adantr |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> A C_ ( J Cn K ) ) |
| 94 |
|
eleq1 |
|- ( f = k -> ( f e. A <-> k e. A ) ) |
| 95 |
94
|
3anbi2d |
|- ( f = k -> ( ( ph /\ f e. A /\ l e. A ) <-> ( ph /\ k e. A /\ l e. A ) ) ) |
| 96 |
|
fveq1 |
|- ( f = k -> ( f ` t ) = ( k ` t ) ) |
| 97 |
96
|
oveq1d |
|- ( f = k -> ( ( f ` t ) x. ( l ` t ) ) = ( ( k ` t ) x. ( l ` t ) ) ) |
| 98 |
97
|
mpteq2dv |
|- ( f = k -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) = ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) ) |
| 99 |
98
|
eleq1d |
|- ( f = k -> ( ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A <-> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A ) ) |
| 100 |
95 99
|
imbi12d |
|- ( f = k -> ( ( ( ph /\ f e. A /\ l e. A ) -> ( t e. T |-> ( ( f ` t ) x. ( l ` t ) ) ) e. A ) <-> ( ( ph /\ k e. A /\ l e. A ) -> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A ) ) ) |
| 101 |
100 10
|
chvarvv |
|- ( ( ph /\ k e. A /\ l e. A ) -> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A ) |
| 102 |
101
|
3adant1r |
|- ( ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) /\ k e. A /\ l e. A ) -> ( t e. T |-> ( ( k ` t ) x. ( l ` t ) ) ) e. A ) |
| 103 |
11
|
adantlr |
|- ( ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) /\ x e. RR ) -> ( t e. T |-> x ) e. A ) |
| 104 |
17
|
adantr |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> S e. T ) |
| 105 |
20
|
adantr |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> Z e. T ) |
| 106 |
|
simpr1 |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> f e. A ) |
| 107 |
|
simpr2 |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> ( f ` S ) =/= ( f ` Z ) ) |
| 108 |
|
simpr3 |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> ( f ` Z ) = 0 ) |
| 109 |
3 82 83 84 86 4 5 6 89 90 91 92 93 102 103 104 105 106 107 108
|
stoweidlem36 |
|- ( ( ph /\ ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) |
| 110 |
109
|
ex |
|- ( ph -> ( ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) ) |
| 111 |
110
|
exlimdv |
|- ( ph -> ( E. f ( f e. A /\ ( f ` S ) =/= ( f ` Z ) /\ ( f ` Z ) = 0 ) -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) ) |
| 112 |
81 111
|
mpd |
|- ( ph -> E. h ( h e. Q /\ 0 < ( h ` S ) ) ) |