Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p_t in the subalgebra, such that p_t( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Hera Z is used for t_0 , S is used for t e. T - U , h is used for p_t. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem43.1 | |
|
stoweidlem43.2 | |
||
stoweidlem43.3 | |
||
stoweidlem43.4 | |
||
stoweidlem43.5 | |
||
stoweidlem43.6 | |
||
stoweidlem43.7 | |
||
stoweidlem43.8 | |
||
stoweidlem43.9 | |
||
stoweidlem43.10 | |
||
stoweidlem43.11 | |
||
stoweidlem43.12 | |
||
stoweidlem43.13 | |
||
stoweidlem43.14 | |
||
stoweidlem43.15 | |
||
Assertion | stoweidlem43 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem43.1 | |
|
2 | stoweidlem43.2 | |
|
3 | stoweidlem43.3 | |
|
4 | stoweidlem43.4 | |
|
5 | stoweidlem43.5 | |
|
6 | stoweidlem43.6 | |
|
7 | stoweidlem43.7 | |
|
8 | stoweidlem43.8 | |
|
9 | stoweidlem43.9 | |
|
10 | stoweidlem43.10 | |
|
11 | stoweidlem43.11 | |
|
12 | stoweidlem43.12 | |
|
13 | stoweidlem43.13 | |
|
14 | stoweidlem43.14 | |
|
15 | stoweidlem43.15 | |
|
16 | nfv | |
|
17 | 15 | eldifad | |
18 | elunii | |
|
19 | 14 13 18 | syl2anc | |
20 | 19 6 | eleqtrrdi | |
21 | 15 | eldifbd | |
22 | nelne2 | |
|
23 | 14 21 22 | syl2anc | |
24 | 23 | necomd | |
25 | 17 20 24 | 3jca | |
26 | simpr2 | |
|
27 | nfv | |
|
28 | 2 27 | nfan | |
29 | nfv | |
|
30 | 28 29 | nfim | |
31 | eleq1 | |
|
32 | neeq2 | |
|
33 | 31 32 | 3anbi23d | |
34 | 33 | anbi2d | |
35 | fveq2 | |
|
36 | 35 | neeq2d | |
37 | 36 | rexbidv | |
38 | 34 37 | imbi12d | |
39 | simpr1 | |
|
40 | eleq1 | |
|
41 | neeq1 | |
|
42 | 40 41 | 3anbi13d | |
43 | 42 | anbi2d | |
44 | fveq2 | |
|
45 | 44 | neeq1d | |
46 | 45 | rexbidv | |
47 | 43 46 | imbi12d | |
48 | 12 | a1i | |
49 | 47 48 | vtoclga | |
50 | 39 49 | mpcom | |
51 | 30 38 50 | vtoclg1f | |
52 | 26 51 | mpcom | |
53 | df-rex | |
|
54 | 52 53 | sylib | |
55 | 25 54 | mpdan | |
56 | nfv | |
|
57 | 2 56 | nfan | |
58 | nfcv | |
|
59 | eqid | |
|
60 | eqid | |
|
61 | 8 | sselda | |
62 | 4 6 60 61 | fcnre | |
63 | 62 | adantlr | |
64 | 9 | 3adant1r | |
65 | 11 | adantlr | |
66 | 17 | adantr | |
67 | 20 | adantr | |
68 | simprl | |
|
69 | simprr | |
|
70 | 57 58 59 63 64 65 66 67 68 69 | stoweidlem23 | |
71 | eleq1 | |
|
72 | fveq1 | |
|
73 | fveq1 | |
|
74 | 72 73 | neeq12d | |
75 | 73 | eqeq1d | |
76 | 71 74 75 | 3anbi123d | |
77 | 76 | spcegv | |
78 | 77 | 3ad2ant1 | |
79 | 78 | pm2.43i | |
80 | 70 79 | syl | |
81 | 1 16 55 80 | exlimdd | |
82 | nfmpt1 | |
|
83 | nfcv | |
|
84 | nfcv | |
|
85 | nfv | |
|
86 | 2 85 | nfan | |
87 | fveq2 | |
|
88 | 87 87 | oveq12d | |
89 | 88 | cbvmptv | |
90 | eqid | |
|
91 | eqid | |
|
92 | 7 | adantr | |
93 | 8 | adantr | |
94 | eleq1 | |
|
95 | 94 | 3anbi2d | |
96 | fveq1 | |
|
97 | 96 | oveq1d | |
98 | 97 | mpteq2dv | |
99 | 98 | eleq1d | |
100 | 95 99 | imbi12d | |
101 | 100 10 | chvarvv | |
102 | 101 | 3adant1r | |
103 | 11 | adantlr | |
104 | 17 | adantr | |
105 | 20 | adantr | |
106 | simpr1 | |
|
107 | simpr2 | |
|
108 | simpr3 | |
|
109 | 3 82 83 84 86 4 5 6 89 90 91 92 93 102 103 104 105 106 107 108 | stoweidlem36 | |
110 | 109 | ex | |
111 | 110 | exlimdv | |
112 | 81 111 | mpd | |