Step |
Hyp |
Ref |
Expression |
1 |
|
ax-hgprmladder |
|- E. d e. ( ZZ>= ` 3 ) E. f e. ( RePart ` d ) ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) |
2 |
|
1nn0 |
|- 1 e. NN0 |
3 |
|
1nn |
|- 1 e. NN |
4 |
2 3
|
decnncl |
|- ; 1 1 e. NN |
5 |
4
|
nnzi |
|- ; 1 1 e. ZZ |
6 |
|
8nn0 |
|- 8 e. NN0 |
7 |
|
8nn |
|- 8 e. NN |
8 |
6 7
|
decnncl |
|- ; 8 8 e. NN |
9 |
|
10nn |
|- ; 1 0 e. NN |
10 |
|
2nn0 |
|- 2 e. NN0 |
11 |
|
9nn |
|- 9 e. NN |
12 |
10 11
|
decnncl |
|- ; 2 9 e. NN |
13 |
12
|
nnnn0i |
|- ; 2 9 e. NN0 |
14 |
|
nnexpcl |
|- ( ( ; 1 0 e. NN /\ ; 2 9 e. NN0 ) -> ( ; 1 0 ^ ; 2 9 ) e. NN ) |
15 |
9 13 14
|
mp2an |
|- ( ; 1 0 ^ ; 2 9 ) e. NN |
16 |
8 15
|
nnmulcli |
|- ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. NN |
17 |
16
|
nnzi |
|- ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. ZZ |
18 |
|
1re |
|- 1 e. RR |
19 |
8
|
nnrei |
|- ; 8 8 e. RR |
20 |
18 19
|
pm3.2i |
|- ( 1 e. RR /\ ; 8 8 e. RR ) |
21 |
|
0le1 |
|- 0 <_ 1 |
22 |
|
1lt10 |
|- 1 < ; 1 0 |
23 |
7 6 2 22
|
declti |
|- 1 < ; 8 8 |
24 |
21 23
|
pm3.2i |
|- ( 0 <_ 1 /\ 1 < ; 8 8 ) |
25 |
|
nnexpcl |
|- ( ( ; 1 0 e. NN /\ 1 e. NN0 ) -> ( ; 1 0 ^ 1 ) e. NN ) |
26 |
9 2 25
|
mp2an |
|- ( ; 1 0 ^ 1 ) e. NN |
27 |
26
|
nnrei |
|- ( ; 1 0 ^ 1 ) e. RR |
28 |
15
|
nnrei |
|- ( ; 1 0 ^ ; 2 9 ) e. RR |
29 |
27 28
|
pm3.2i |
|- ( ( ; 1 0 ^ 1 ) e. RR /\ ( ; 1 0 ^ ; 2 9 ) e. RR ) |
30 |
|
0re |
|- 0 e. RR |
31 |
|
10re |
|- ; 1 0 e. RR |
32 |
|
10pos |
|- 0 < ; 1 0 |
33 |
30 31 32
|
ltleii |
|- 0 <_ ; 1 0 |
34 |
9
|
nncni |
|- ; 1 0 e. CC |
35 |
|
exp1 |
|- ( ; 1 0 e. CC -> ( ; 1 0 ^ 1 ) = ; 1 0 ) |
36 |
34 35
|
ax-mp |
|- ( ; 1 0 ^ 1 ) = ; 1 0 |
37 |
33 36
|
breqtrri |
|- 0 <_ ( ; 1 0 ^ 1 ) |
38 |
|
1z |
|- 1 e. ZZ |
39 |
12
|
nnzi |
|- ; 2 9 e. ZZ |
40 |
31 38 39
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 9 e. ZZ ) |
41 |
|
2nn |
|- 2 e. NN |
42 |
|
9nn0 |
|- 9 e. NN0 |
43 |
41 42 2 22
|
declti |
|- 1 < ; 2 9 |
44 |
22 43
|
pm3.2i |
|- ( 1 < ; 1 0 /\ 1 < ; 2 9 ) |
45 |
|
ltexp2a |
|- ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 2 9 e. ZZ ) /\ ( 1 < ; 1 0 /\ 1 < ; 2 9 ) ) -> ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 2 9 ) ) |
46 |
40 44 45
|
mp2an |
|- ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 2 9 ) |
47 |
37 46
|
pm3.2i |
|- ( 0 <_ ( ; 1 0 ^ 1 ) /\ ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 2 9 ) ) |
48 |
|
ltmul12a |
|- ( ( ( ( 1 e. RR /\ ; 8 8 e. RR ) /\ ( 0 <_ 1 /\ 1 < ; 8 8 ) ) /\ ( ( ( ; 1 0 ^ 1 ) e. RR /\ ( ; 1 0 ^ ; 2 9 ) e. RR ) /\ ( 0 <_ ( ; 1 0 ^ 1 ) /\ ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( 1 x. ( ; 1 0 ^ 1 ) ) < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) |
49 |
20 24 29 47 48
|
mp4an |
|- ( 1 x. ( ; 1 0 ^ 1 ) ) < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) |
50 |
26
|
nnzi |
|- ( ; 1 0 ^ 1 ) e. ZZ |
51 |
|
zmulcl |
|- ( ( 1 e. ZZ /\ ( ; 1 0 ^ 1 ) e. ZZ ) -> ( 1 x. ( ; 1 0 ^ 1 ) ) e. ZZ ) |
52 |
38 50 51
|
mp2an |
|- ( 1 x. ( ; 1 0 ^ 1 ) ) e. ZZ |
53 |
|
zltp1le |
|- ( ( ( 1 x. ( ; 1 0 ^ 1 ) ) e. ZZ /\ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. ZZ ) -> ( ( 1 x. ( ; 1 0 ^ 1 ) ) < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) <-> ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) |
54 |
52 17 53
|
mp2an |
|- ( ( 1 x. ( ; 1 0 ^ 1 ) ) < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) <-> ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) |
55 |
|
1t10e1p1e11 |
|- ; 1 1 = ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) |
56 |
55
|
eqcomi |
|- ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) = ; 1 1 |
57 |
56
|
breq1i |
|- ( ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) <-> ; 1 1 <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) |
58 |
54 57
|
bitri |
|- ( ( 1 x. ( ; 1 0 ^ 1 ) ) < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) <-> ; 1 1 <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) |
59 |
49 58
|
mpbi |
|- ; 1 1 <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) |
60 |
|
eluz2 |
|- ( ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. ( ZZ>= ` ; 1 1 ) <-> ( ; 1 1 e. ZZ /\ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. ZZ /\ ; 1 1 <_ ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) |
61 |
5 17 59 60
|
mpbir3an |
|- ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. ( ZZ>= ` ; 1 1 ) |
62 |
61
|
a1i |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) e. ( ZZ>= ` ; 1 1 ) ) |
63 |
|
4nn |
|- 4 e. NN |
64 |
2 7
|
decnncl |
|- ; 1 8 e. NN |
65 |
64
|
nnnn0i |
|- ; 1 8 e. NN0 |
66 |
|
nnexpcl |
|- ( ( ; 1 0 e. NN /\ ; 1 8 e. NN0 ) -> ( ; 1 0 ^ ; 1 8 ) e. NN ) |
67 |
9 65 66
|
mp2an |
|- ( ; 1 0 ^ ; 1 8 ) e. NN |
68 |
63 67
|
nnmulcli |
|- ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. NN |
69 |
68
|
nnzi |
|- ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ZZ |
70 |
|
4re |
|- 4 e. RR |
71 |
18 70
|
pm3.2i |
|- ( 1 e. RR /\ 4 e. RR ) |
72 |
|
1lt4 |
|- 1 < 4 |
73 |
21 72
|
pm3.2i |
|- ( 0 <_ 1 /\ 1 < 4 ) |
74 |
67
|
nnrei |
|- ( ; 1 0 ^ ; 1 8 ) e. RR |
75 |
27 74
|
pm3.2i |
|- ( ( ; 1 0 ^ 1 ) e. RR /\ ( ; 1 0 ^ ; 1 8 ) e. RR ) |
76 |
64
|
nnzi |
|- ; 1 8 e. ZZ |
77 |
31 38 76
|
3pm3.2i |
|- ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 1 8 e. ZZ ) |
78 |
3 6 2 22
|
declti |
|- 1 < ; 1 8 |
79 |
22 78
|
pm3.2i |
|- ( 1 < ; 1 0 /\ 1 < ; 1 8 ) |
80 |
|
ltexp2a |
|- ( ( ( ; 1 0 e. RR /\ 1 e. ZZ /\ ; 1 8 e. ZZ ) /\ ( 1 < ; 1 0 /\ 1 < ; 1 8 ) ) -> ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 1 8 ) ) |
81 |
77 79 80
|
mp2an |
|- ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 1 8 ) |
82 |
37 81
|
pm3.2i |
|- ( 0 <_ ( ; 1 0 ^ 1 ) /\ ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 1 8 ) ) |
83 |
|
ltmul12a |
|- ( ( ( ( 1 e. RR /\ 4 e. RR ) /\ ( 0 <_ 1 /\ 1 < 4 ) ) /\ ( ( ( ; 1 0 ^ 1 ) e. RR /\ ( ; 1 0 ^ ; 1 8 ) e. RR ) /\ ( 0 <_ ( ; 1 0 ^ 1 ) /\ ( ; 1 0 ^ 1 ) < ( ; 1 0 ^ ; 1 8 ) ) ) ) -> ( 1 x. ( ; 1 0 ^ 1 ) ) < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) |
84 |
71 73 75 82 83
|
mp4an |
|- ( 1 x. ( ; 1 0 ^ 1 ) ) < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) |
85 |
|
4z |
|- 4 e. ZZ |
86 |
67
|
nnzi |
|- ( ; 1 0 ^ ; 1 8 ) e. ZZ |
87 |
|
zmulcl |
|- ( ( 4 e. ZZ /\ ( ; 1 0 ^ ; 1 8 ) e. ZZ ) -> ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ZZ ) |
88 |
85 86 87
|
mp2an |
|- ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ZZ |
89 |
|
zltp1le |
|- ( ( ( 1 x. ( ; 1 0 ^ 1 ) ) e. ZZ /\ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ZZ ) -> ( ( 1 x. ( ; 1 0 ^ 1 ) ) < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) <-> ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) |
90 |
52 88 89
|
mp2an |
|- ( ( 1 x. ( ; 1 0 ^ 1 ) ) < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) <-> ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) |
91 |
56
|
breq1i |
|- ( ( ( 1 x. ( ; 1 0 ^ 1 ) ) + 1 ) <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) <-> ; 1 1 <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) |
92 |
90 91
|
bitri |
|- ( ( 1 x. ( ; 1 0 ^ 1 ) ) < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) <-> ; 1 1 <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) |
93 |
84 92
|
mpbi |
|- ; 1 1 <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) |
94 |
|
eluz2 |
|- ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ( ZZ>= ` ; 1 1 ) <-> ( ; 1 1 e. ZZ /\ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ZZ /\ ; 1 1 <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) |
95 |
5 69 93 94
|
mpbir3an |
|- ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ( ZZ>= ` ; 1 1 ) |
96 |
95
|
a1i |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. ( ZZ>= ` ; 1 1 ) ) |
97 |
|
simpl |
|- ( ( n e. Even /\ ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) -> n e. Even ) |
98 |
|
simprl |
|- ( ( n e. Even /\ ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) -> 4 < n ) |
99 |
|
evenz |
|- ( n e. Even -> n e. ZZ ) |
100 |
99
|
zred |
|- ( n e. Even -> n e. RR ) |
101 |
68
|
nnrei |
|- ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. RR |
102 |
|
ltle |
|- ( ( n e. RR /\ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) e. RR ) -> ( n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) -> n <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) |
103 |
100 101 102
|
sylancl |
|- ( n e. Even -> ( n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) -> n <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) |
104 |
103
|
a1d |
|- ( n e. Even -> ( 4 < n -> ( n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) -> n <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) ) |
105 |
104
|
imp32 |
|- ( ( n e. Even /\ ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) -> n <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) |
106 |
|
ax-bgbltosilva |
|- ( ( n e. Even /\ 4 < n /\ n <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) -> n e. GoldbachEven ) |
107 |
97 98 105 106
|
syl3anc |
|- ( ( n e. Even /\ ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) ) -> n e. GoldbachEven ) |
108 |
107
|
ex |
|- ( n e. Even -> ( ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) -> n e. GoldbachEven ) ) |
109 |
108
|
a1i |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( n e. Even -> ( ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) -> n e. GoldbachEven ) ) ) |
110 |
109
|
ralrimiv |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> A. n e. Even ( ( 4 < n /\ n < ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) -> n e. GoldbachEven ) ) |
111 |
|
simpl |
|- ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) -> d e. ( ZZ>= ` 3 ) ) |
112 |
111
|
ad2antrr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> d e. ( ZZ>= ` 3 ) ) |
113 |
|
simpr |
|- ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) -> f e. ( RePart ` d ) ) |
114 |
113
|
ad2antrr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> f e. ( RePart ` d ) ) |
115 |
|
simpr |
|- ( ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) |
116 |
115
|
ad2antlr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) |
117 |
|
simpl1 |
|- ( ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( f ` 0 ) = 7 ) |
118 |
117
|
ad2antlr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( f ` 0 ) = 7 ) |
119 |
|
simpl2 |
|- ( ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( f ` 1 ) = ; 1 3 ) |
120 |
119
|
ad2antlr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( f ` 1 ) = ; 1 3 ) |
121 |
6 11
|
decnncl |
|- ; 8 9 e. NN |
122 |
121
|
nnrei |
|- ; 8 9 e. RR |
123 |
15
|
nngt0i |
|- 0 < ( ; 1 0 ^ ; 2 9 ) |
124 |
28 123
|
pm3.2i |
|- ( ( ; 1 0 ^ ; 2 9 ) e. RR /\ 0 < ( ; 1 0 ^ ; 2 9 ) ) |
125 |
19 122 124
|
3pm3.2i |
|- ( ; 8 8 e. RR /\ ; 8 9 e. RR /\ ( ( ; 1 0 ^ ; 2 9 ) e. RR /\ 0 < ( ; 1 0 ^ ; 2 9 ) ) ) |
126 |
|
8lt9 |
|- 8 < 9 |
127 |
6 6 11 126
|
declt |
|- ; 8 8 < ; 8 9 |
128 |
|
ltmul1a |
|- ( ( ( ; 8 8 e. RR /\ ; 8 9 e. RR /\ ( ( ; 1 0 ^ ; 2 9 ) e. RR /\ 0 < ( ; 1 0 ^ ; 2 9 ) ) ) /\ ; 8 8 < ; 8 9 ) -> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) |
129 |
125 127 128
|
mp2an |
|- ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) |
130 |
|
breq2 |
|- ( ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) -> ( ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( f ` d ) <-> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) |
131 |
129 130
|
mpbiri |
|- ( ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) -> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( f ` d ) ) |
132 |
131
|
3ad2ant3 |
|- ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( f ` d ) ) |
133 |
132
|
adantr |
|- ( ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( f ` d ) ) |
134 |
133
|
ad2antlr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) < ( f ` d ) ) |
135 |
121 15
|
nnmulcli |
|- ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) e. NN |
136 |
135
|
nnrei |
|- ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) e. RR |
137 |
|
eleq1 |
|- ( ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) -> ( ( f ` d ) e. RR <-> ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) e. RR ) ) |
138 |
136 137
|
mpbiri |
|- ( ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) -> ( f ` d ) e. RR ) |
139 |
138
|
3ad2ant3 |
|- ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> ( f ` d ) e. RR ) |
140 |
139
|
adantr |
|- ( ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( f ` d ) e. RR ) |
141 |
140
|
ad2antlr |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> ( f ` d ) e. RR ) |
142 |
62 96 110 112 114 116 118 120 134 141
|
bgoldbtbnd |
|- ( ( ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) /\ ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) ) /\ ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) -> A. n e. Odd ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) ) |
143 |
142
|
exp31 |
|- ( ( d e. ( ZZ>= ` 3 ) /\ f e. ( RePart ` d ) ) -> ( ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> A. n e. Odd ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) ) ) ) |
144 |
143
|
rexlimivv |
|- ( E. d e. ( ZZ>= ` 3 ) E. f e. ( RePart ` d ) ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> A. n e. Odd ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) ) ) |
145 |
|
breq2 |
|- ( n = N -> ( 7 < n <-> 7 < N ) ) |
146 |
|
breq1 |
|- ( n = N -> ( n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) <-> N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) |
147 |
145 146
|
anbi12d |
|- ( n = N -> ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) <-> ( 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) ) ) |
148 |
|
eleq1 |
|- ( n = N -> ( n e. GoldbachOdd <-> N e. GoldbachOdd ) ) |
149 |
147 148
|
imbi12d |
|- ( n = N -> ( ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) <-> ( ( 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> N e. GoldbachOdd ) ) ) |
150 |
149
|
rspcv |
|- ( N e. Odd -> ( A. n e. Odd ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) -> ( ( 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> N e. GoldbachOdd ) ) ) |
151 |
150
|
com23 |
|- ( N e. Odd -> ( ( 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> ( A. n e. Odd ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) -> N e. GoldbachOdd ) ) ) |
152 |
151
|
3impib |
|- ( ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> ( A. n e. Odd ( ( 7 < n /\ n < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> n e. GoldbachOdd ) -> N e. GoldbachOdd ) ) |
153 |
144 152
|
sylcom |
|- ( E. d e. ( ZZ>= ` 3 ) E. f e. ( RePart ` d ) ( ( ( f ` 0 ) = 7 /\ ( f ` 1 ) = ; 1 3 /\ ( f ` d ) = ( ; 8 9 x. ( ; 1 0 ^ ; 2 9 ) ) ) /\ A. i e. ( 0 ..^ d ) ( ( f ` i ) e. ( Prime \ { 2 } ) /\ ( ( f ` ( i + 1 ) ) - ( f ` i ) ) < ( ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) - 4 ) /\ 4 < ( ( f ` ( i + 1 ) ) - ( f ` i ) ) ) ) -> ( ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> N e. GoldbachOdd ) ) |
154 |
1 153
|
ax-mp |
|- ( ( N e. Odd /\ 7 < N /\ N < ( ; 8 8 x. ( ; 1 0 ^ ; 2 9 ) ) ) -> N e. GoldbachOdd ) |