| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xralrple2.x |
|- F/ x ph |
| 2 |
|
xralrple2.a |
|- ( ph -> A e. RR* ) |
| 3 |
|
xralrple2.b |
|- ( ph -> B e. ( 0 [,) +oo ) ) |
| 4 |
|
nfv |
|- F/ x A <_ B |
| 5 |
1 4
|
nfan |
|- F/ x ( ph /\ A <_ B ) |
| 6 |
2
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> A e. RR* ) |
| 7 |
|
icossxr |
|- ( 0 [,) +oo ) C_ RR* |
| 8 |
3
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> B e. ( 0 [,) +oo ) ) |
| 9 |
7 8
|
sselid |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> B e. RR* ) |
| 10 |
|
1red |
|- ( ( ph /\ x e. RR+ ) -> 1 e. RR ) |
| 11 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 13 |
10 12
|
readdcld |
|- ( ( ph /\ x e. RR+ ) -> ( 1 + x ) e. RR ) |
| 14 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 15 |
14 3
|
sselid |
|- ( ph -> B e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> B e. RR ) |
| 17 |
13 16
|
remulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 + x ) x. B ) e. RR ) |
| 18 |
17
|
rexrd |
|- ( ( ph /\ x e. RR+ ) -> ( ( 1 + x ) x. B ) e. RR* ) |
| 19 |
18
|
adantlr |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> ( ( 1 + x ) x. B ) e. RR* ) |
| 20 |
|
simplr |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> A <_ B ) |
| 21 |
15
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> B e. RR ) |
| 22 |
|
1red |
|- ( x e. RR+ -> 1 e. RR ) |
| 23 |
22 11
|
readdcld |
|- ( x e. RR+ -> ( 1 + x ) e. RR ) |
| 24 |
23
|
adantl |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> ( 1 + x ) e. RR ) |
| 25 |
|
0xr |
|- 0 e. RR* |
| 26 |
25
|
a1i |
|- ( B e. ( 0 [,) +oo ) -> 0 e. RR* ) |
| 27 |
|
pnfxr |
|- +oo e. RR* |
| 28 |
27
|
a1i |
|- ( B e. ( 0 [,) +oo ) -> +oo e. RR* ) |
| 29 |
|
id |
|- ( B e. ( 0 [,) +oo ) -> B e. ( 0 [,) +oo ) ) |
| 30 |
|
icogelb |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. ( 0 [,) +oo ) ) -> 0 <_ B ) |
| 31 |
26 28 29 30
|
syl3anc |
|- ( B e. ( 0 [,) +oo ) -> 0 <_ B ) |
| 32 |
3 31
|
syl |
|- ( ph -> 0 <_ B ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> 0 <_ B ) |
| 34 |
|
id |
|- ( x e. RR+ -> x e. RR+ ) |
| 35 |
22 34
|
ltaddrpd |
|- ( x e. RR+ -> 1 < ( 1 + x ) ) |
| 36 |
22 23 35
|
ltled |
|- ( x e. RR+ -> 1 <_ ( 1 + x ) ) |
| 37 |
36
|
adantl |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> 1 <_ ( 1 + x ) ) |
| 38 |
21 24 33 37
|
lemulge12d |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> B <_ ( ( 1 + x ) x. B ) ) |
| 39 |
6 9 19 20 38
|
xrletrd |
|- ( ( ( ph /\ A <_ B ) /\ x e. RR+ ) -> A <_ ( ( 1 + x ) x. B ) ) |
| 40 |
39
|
ex |
|- ( ( ph /\ A <_ B ) -> ( x e. RR+ -> A <_ ( ( 1 + x ) x. B ) ) ) |
| 41 |
5 40
|
ralrimi |
|- ( ( ph /\ A <_ B ) -> A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) |
| 42 |
41
|
ex |
|- ( ph -> ( A <_ B -> A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) ) |
| 43 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> A e. RR* ) |
| 44 |
|
id |
|- ( B = 0 -> B = 0 ) |
| 45 |
|
0red |
|- ( B = 0 -> 0 e. RR ) |
| 46 |
44 45
|
eqeltrd |
|- ( B = 0 -> B e. RR ) |
| 47 |
46
|
adantl |
|- ( ( y e. RR+ /\ B = 0 ) -> B e. RR ) |
| 48 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
| 49 |
48
|
adantr |
|- ( ( y e. RR+ /\ B = 0 ) -> y e. RR ) |
| 50 |
47 49
|
readdcld |
|- ( ( y e. RR+ /\ B = 0 ) -> ( B + y ) e. RR ) |
| 51 |
50
|
rexrd |
|- ( ( y e. RR+ /\ B = 0 ) -> ( B + y ) e. RR* ) |
| 52 |
51
|
adantll |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> ( B + y ) e. RR* ) |
| 53 |
25
|
a1i |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> 0 e. RR* ) |
| 54 |
|
1rp |
|- 1 e. RR+ |
| 55 |
54
|
a1i |
|- ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> 1 e. RR+ ) |
| 56 |
|
id |
|- ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) |
| 57 |
|
oveq2 |
|- ( x = 1 -> ( 1 + x ) = ( 1 + 1 ) ) |
| 58 |
57
|
oveq1d |
|- ( x = 1 -> ( ( 1 + x ) x. B ) = ( ( 1 + 1 ) x. B ) ) |
| 59 |
58
|
breq2d |
|- ( x = 1 -> ( A <_ ( ( 1 + x ) x. B ) <-> A <_ ( ( 1 + 1 ) x. B ) ) ) |
| 60 |
59
|
rspcva |
|- ( ( 1 e. RR+ /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) -> A <_ ( ( 1 + 1 ) x. B ) ) |
| 61 |
55 56 60
|
syl2anc |
|- ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> A <_ ( ( 1 + 1 ) x. B ) ) |
| 62 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 63 |
62
|
a1i |
|- ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> ( 1 + 1 ) = 2 ) |
| 64 |
63
|
oveq1d |
|- ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> ( ( 1 + 1 ) x. B ) = ( 2 x. B ) ) |
| 65 |
61 64
|
breqtrd |
|- ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> A <_ ( 2 x. B ) ) |
| 66 |
65
|
adantr |
|- ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ B = 0 ) -> A <_ ( 2 x. B ) ) |
| 67 |
|
simpr |
|- ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ B = 0 ) -> B = 0 ) |
| 68 |
|
simpl |
|- ( ( A <_ ( 2 x. B ) /\ B = 0 ) -> A <_ ( 2 x. B ) ) |
| 69 |
|
oveq2 |
|- ( B = 0 -> ( 2 x. B ) = ( 2 x. 0 ) ) |
| 70 |
|
2cnd |
|- ( B = 0 -> 2 e. CC ) |
| 71 |
70
|
mul01d |
|- ( B = 0 -> ( 2 x. 0 ) = 0 ) |
| 72 |
69 71
|
eqtrd |
|- ( B = 0 -> ( 2 x. B ) = 0 ) |
| 73 |
72
|
adantl |
|- ( ( A <_ ( 2 x. B ) /\ B = 0 ) -> ( 2 x. B ) = 0 ) |
| 74 |
68 73
|
breqtrd |
|- ( ( A <_ ( 2 x. B ) /\ B = 0 ) -> A <_ 0 ) |
| 75 |
66 67 74
|
syl2anc |
|- ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ B = 0 ) -> A <_ 0 ) |
| 76 |
75
|
ad4ant24 |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> A <_ 0 ) |
| 77 |
|
rpgt0 |
|- ( y e. RR+ -> 0 < y ) |
| 78 |
77
|
adantr |
|- ( ( y e. RR+ /\ B = 0 ) -> 0 < y ) |
| 79 |
|
oveq1 |
|- ( B = 0 -> ( B + y ) = ( 0 + y ) ) |
| 80 |
79
|
adantl |
|- ( ( y e. RR+ /\ B = 0 ) -> ( B + y ) = ( 0 + y ) ) |
| 81 |
48
|
recnd |
|- ( y e. RR+ -> y e. CC ) |
| 82 |
81
|
adantr |
|- ( ( y e. RR+ /\ B = 0 ) -> y e. CC ) |
| 83 |
82
|
addlidd |
|- ( ( y e. RR+ /\ B = 0 ) -> ( 0 + y ) = y ) |
| 84 |
80 83
|
eqtr2d |
|- ( ( y e. RR+ /\ B = 0 ) -> y = ( B + y ) ) |
| 85 |
78 84
|
breqtrd |
|- ( ( y e. RR+ /\ B = 0 ) -> 0 < ( B + y ) ) |
| 86 |
85
|
adantll |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> 0 < ( B + y ) ) |
| 87 |
43 53 52 76 86
|
xrlelttrd |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> A < ( B + y ) ) |
| 88 |
43 52 87
|
xrltled |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B = 0 ) -> A <_ ( B + y ) ) |
| 89 |
|
simpl |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ -. B = 0 ) -> ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) ) |
| 90 |
15
|
adantr |
|- ( ( ph /\ -. B = 0 ) -> B e. RR ) |
| 91 |
|
0red |
|- ( ( ph /\ -. B = 0 ) -> 0 e. RR ) |
| 92 |
32
|
adantr |
|- ( ( ph /\ -. B = 0 ) -> 0 <_ B ) |
| 93 |
44
|
necon3bi |
|- ( -. B = 0 -> B =/= 0 ) |
| 94 |
93
|
adantl |
|- ( ( ph /\ -. B = 0 ) -> B =/= 0 ) |
| 95 |
91 90 92 94
|
leneltd |
|- ( ( ph /\ -. B = 0 ) -> 0 < B ) |
| 96 |
90 95
|
elrpd |
|- ( ( ph /\ -. B = 0 ) -> B e. RR+ ) |
| 97 |
96
|
ad4ant14 |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ -. B = 0 ) -> B e. RR+ ) |
| 98 |
|
simplr |
|- ( ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ y e. RR+ ) /\ B e. RR+ ) -> y e. RR+ ) |
| 99 |
|
simpr |
|- ( ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ y e. RR+ ) /\ B e. RR+ ) -> B e. RR+ ) |
| 100 |
98 99
|
rpdivcld |
|- ( ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ y e. RR+ ) /\ B e. RR+ ) -> ( y / B ) e. RR+ ) |
| 101 |
|
simpll |
|- ( ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ y e. RR+ ) /\ B e. RR+ ) -> A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) |
| 102 |
|
oveq2 |
|- ( x = ( y / B ) -> ( 1 + x ) = ( 1 + ( y / B ) ) ) |
| 103 |
102
|
oveq1d |
|- ( x = ( y / B ) -> ( ( 1 + x ) x. B ) = ( ( 1 + ( y / B ) ) x. B ) ) |
| 104 |
103
|
breq2d |
|- ( x = ( y / B ) -> ( A <_ ( ( 1 + x ) x. B ) <-> A <_ ( ( 1 + ( y / B ) ) x. B ) ) ) |
| 105 |
104
|
rspcva |
|- ( ( ( y / B ) e. RR+ /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) -> A <_ ( ( 1 + ( y / B ) ) x. B ) ) |
| 106 |
100 101 105
|
syl2anc |
|- ( ( ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) /\ y e. RR+ ) /\ B e. RR+ ) -> A <_ ( ( 1 + ( y / B ) ) x. B ) ) |
| 107 |
106
|
adantlll |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B e. RR+ ) -> A <_ ( ( 1 + ( y / B ) ) x. B ) ) |
| 108 |
|
1cnd |
|- ( ( y e. RR+ /\ B e. RR+ ) -> 1 e. CC ) |
| 109 |
81
|
adantr |
|- ( ( y e. RR+ /\ B e. RR+ ) -> y e. CC ) |
| 110 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 111 |
110
|
adantl |
|- ( ( y e. RR+ /\ B e. RR+ ) -> B e. CC ) |
| 112 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 113 |
112
|
adantl |
|- ( ( y e. RR+ /\ B e. RR+ ) -> B =/= 0 ) |
| 114 |
109 111 113
|
divcld |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( y / B ) e. CC ) |
| 115 |
108 114 111
|
adddird |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( ( 1 + ( y / B ) ) x. B ) = ( ( 1 x. B ) + ( ( y / B ) x. B ) ) ) |
| 116 |
111
|
mullidd |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( 1 x. B ) = B ) |
| 117 |
109 111 113
|
divcan1d |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( ( y / B ) x. B ) = y ) |
| 118 |
116 117
|
oveq12d |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( ( 1 x. B ) + ( ( y / B ) x. B ) ) = ( B + y ) ) |
| 119 |
|
eqidd |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( B + y ) = ( B + y ) ) |
| 120 |
115 118 119
|
3eqtrd |
|- ( ( y e. RR+ /\ B e. RR+ ) -> ( ( 1 + ( y / B ) ) x. B ) = ( B + y ) ) |
| 121 |
120
|
adantll |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B e. RR+ ) -> ( ( 1 + ( y / B ) ) x. B ) = ( B + y ) ) |
| 122 |
107 121
|
breqtrd |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ B e. RR+ ) -> A <_ ( B + y ) ) |
| 123 |
89 97 122
|
syl2anc |
|- ( ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) /\ -. B = 0 ) -> A <_ ( B + y ) ) |
| 124 |
88 123
|
pm2.61dan |
|- ( ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) /\ y e. RR+ ) -> A <_ ( B + y ) ) |
| 125 |
124
|
ralrimiva |
|- ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) -> A. y e. RR+ A <_ ( B + y ) ) |
| 126 |
|
xralrple |
|- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B <-> A. y e. RR+ A <_ ( B + y ) ) ) |
| 127 |
2 15 126
|
syl2anc |
|- ( ph -> ( A <_ B <-> A. y e. RR+ A <_ ( B + y ) ) ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) -> ( A <_ B <-> A. y e. RR+ A <_ ( B + y ) ) ) |
| 129 |
125 128
|
mpbird |
|- ( ( ph /\ A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) -> A <_ B ) |
| 130 |
129
|
ex |
|- ( ph -> ( A. x e. RR+ A <_ ( ( 1 + x ) x. B ) -> A <_ B ) ) |
| 131 |
42 130
|
impbid |
|- ( ph -> ( A <_ B <-> A. x e. RR+ A <_ ( ( 1 + x ) x. B ) ) ) |