Metamath Proof Explorer


Theorem 0dgr

Description: A constant function has degree 0. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion 0dgr Adeg×A=0

Proof

Step Hyp Ref Expression
1 ssid
2 plyconst A×APoly
3 1 2 mpan A×APoly
4 0nn0 00
5 4 a1i A00
6 simpl Ak00A
7 fconstmpt ×A=zA
8 0z 0
9 exp0 zz0=1
10 9 oveq2d zAz0=A1
11 mulrid AA1=A
12 10 11 sylan9eqr AzAz0=A
13 simpl AzA
14 12 13 eqeltrd AzAz0
15 oveq2 k=0zk=z0
16 15 oveq2d k=0Azk=Az0
17 16 fsum1 0Az0k=00Azk=Az0
18 8 14 17 sylancr Azk=00Azk=Az0
19 18 12 eqtrd Azk=00Azk=A
20 19 mpteq2dva Azk=00Azk=zA
21 7 20 eqtr4id A×A=zk=00Azk
22 3 5 6 21 dgrle Adeg×A0
23 dgrcl ×APolydeg×A0
24 nn0le0eq0 deg×A0deg×A0deg×A=0
25 3 23 24 3syl Adeg×A0deg×A=0
26 22 25 mpbid Adeg×A=0