Metamath Proof Explorer


Theorem 0prjspn

Description: A zero-dimensional projective space has only 1 point. (Contributed by Steven Nguyen, 9-Jun-2023)

Ref Expression
Hypotheses 0prjspn.w W=KfreeLMod00
0prjspn.b B=BaseW0W
Assertion 0prjspn KDivRing0ℙ𝕣𝕠𝕛nK=B

Proof

Step Hyp Ref Expression
1 0prjspn.w W=KfreeLMod00
2 0prjspn.b B=BaseW0W
3 0nn0 00
4 eqid xy|xByBlBaseKx=lWy=xy|xByBlBaseKx=lWy
5 eqid BaseK=BaseK
6 eqid W=W
7 4 1 2 5 6 prjspnval2 00KDivRing0ℙ𝕣𝕠𝕛nK=B/xy|xByBlBaseKx=lWy
8 3 7 mpan KDivRing0ℙ𝕣𝕠𝕛nK=B/xy|xByBlBaseKx=lWy
9 ovex 00V
10 1 frlmsca KDivRing00VK=ScalarW
11 9 10 mpan2 KDivRingK=ScalarW
12 11 fveq2d KDivRingBaseK=BaseScalarW
13 12 rexeqdv KDivRinglBaseKx=lWylBaseScalarWx=lWy
14 13 anbi2d KDivRingxByBlBaseKx=lWyxByBlBaseScalarWx=lWy
15 14 opabbidv KDivRingxy|xByBlBaseKx=lWy=xy|xByBlBaseScalarWx=lWy
16 15 qseq2d KDivRingB/xy|xByBlBaseKx=lWy=B/xy|xByBlBaseScalarWx=lWy
17 1 frlmlvec KDivRing00VWLVec
18 9 17 mpan2 KDivRingWLVec
19 lveclmod WLVecWLMod
20 18 19 syl KDivRingWLMod
21 20 adantr KDivRingaBbBWLMod
22 15 adantr KDivRingaBxy|xByBlBaseKx=lWy=xy|xByBlBaseScalarWx=lWy
23 eqid KunitVec000=KunitVec000
24 4 2 6 5 1 23 0prjspnrel KDivRingaBaxy|xByBlBaseKx=lWyKunitVec000
25 22 24 breqdi KDivRingaBaxy|xByBlBaseScalarWx=lWyKunitVec000
26 25 adantrr KDivRingaBbBaxy|xByBlBaseScalarWx=lWyKunitVec000
27 15 adantr KDivRingbBxy|xByBlBaseKx=lWy=xy|xByBlBaseScalarWx=lWy
28 4 2 6 5 1 23 0prjspnrel KDivRingbBbxy|xByBlBaseKx=lWyKunitVec000
29 27 28 breqdi KDivRingbBbxy|xByBlBaseScalarWx=lWyKunitVec000
30 eqid xy|xByBlBaseScalarWx=lWy=xy|xByBlBaseScalarWx=lWy
31 eqid ScalarW=ScalarW
32 eqid BaseScalarW=BaseScalarW
33 30 2 31 6 32 prjspersym WLVecbxy|xByBlBaseScalarWx=lWyKunitVec000KunitVec000xy|xByBlBaseScalarWx=lWyb
34 18 29 33 syl2an2r KDivRingbBKunitVec000xy|xByBlBaseScalarWx=lWyb
35 34 adantrl KDivRingaBbBKunitVec000xy|xByBlBaseScalarWx=lWyb
36 30 2 31 6 32 prjspertr WLModaxy|xByBlBaseScalarWx=lWyKunitVec000KunitVec000xy|xByBlBaseScalarWx=lWybaxy|xByBlBaseScalarWx=lWyb
37 21 26 35 36 syl12anc KDivRingaBbBaxy|xByBlBaseScalarWx=lWyb
38 30 2 31 6 32 prjsper WLVecxy|xByBlBaseScalarWx=lWyErB
39 18 38 syl KDivRingxy|xByBlBaseScalarWx=lWyErB
40 2 1 23 0prjspnlem KDivRingKunitVec000B
41 37 39 40 qsalrel KDivRingB/xy|xByBlBaseScalarWx=lWy=B
42 8 16 41 3eqtrd KDivRing0ℙ𝕣𝕠𝕛nK=B