Metamath Proof Explorer


Theorem 0rrv

Description: The constant function equal to zero is a random variable. (Contributed by Thierry Arnoux, 16-Jan-2017) (Revised by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Hypothesis 0rrv.1 φPProb
Assertion 0rrv φxdomP0RndVarP

Proof

Step Hyp Ref Expression
1 0rrv.1 φPProb
2 0re 0
3 2 rgenw xdomP0
4 eqid xdomP0=xdomP0
5 4 fmpt xdomP0xdomP0:domP
6 3 5 mpbi xdomP0:domP
7 6 a1i φxdomP0:domP
8 fconstmpt domP×0=xdomP0
9 8 cnveqi domP×0-1=xdomP0-1
10 cnvxp domP×0-1=0×domP
11 9 10 eqtr3i xdomP0-1=0×domP
12 11 imaeq1i xdomP0-1y=0×domPy
13 df-ima 0×domPy=ran0×domPy
14 df-rn ran0×domPy=dom0×domPy-1
15 12 13 14 3eqtri xdomP0-1y=dom0×domPy-1
16 df-res 0×domPy=0×domPy×V
17 inxp 0×domPy×V=0y×domPV
18 inv1 domPV=domP
19 18 xpeq2i 0y×domPV=0y×domP
20 16 17 19 3eqtri 0×domPy=0y×domP
21 20 cnveqi 0×domPy-1=0y×domP-1
22 21 dmeqi dom0×domPy-1=dom0y×domP-1
23 cnvxp 0y×domP-1=domP×0y
24 23 dmeqi dom0y×domP-1=domdomP×0y
25 15 22 24 3eqtri xdomP0-1y=domdomP×0y
26 xpeq2 0y=domP×0y=domP×
27 xp0 domP×=
28 26 27 eqtrdi 0y=domP×0y=
29 28 dmeqd 0y=domdomP×0y=dom
30 dm0 dom=
31 29 30 eqtrdi 0y=domdomP×0y=
32 31 adantl φ0y=domdomP×0y=
33 domprobsiga PProbdomPransigAlgebra
34 0elsiga domPransigAlgebradomP
35 1 33 34 3syl φdomP
36 35 adantr φ0y=domP
37 32 36 eqeltrd φ0y=domdomP×0ydomP
38 25 37 eqeltrid φ0y=xdomP0-1ydomP
39 dmxp 0ydomdomP×0y=domP
40 39 adantl φ0ydomdomP×0y=domP
41 1 unveldomd φdomPdomP
42 41 adantr φ0ydomPdomP
43 40 42 eqeltrd φ0ydomdomP×0ydomP
44 25 43 eqeltrid φ0yxdomP0-1ydomP
45 38 44 pm2.61dane φxdomP0-1ydomP
46 45 ralrimivw φy𝔅xdomP0-1ydomP
47 1 isrrvv φxdomP0RndVarPxdomP0:domPy𝔅xdomP0-1ydomP
48 7 46 47 mpbir2and φxdomP0RndVarP