| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0rrv.1 |  | 
						
							| 2 |  | 0re |  | 
						
							| 3 | 2 | rgenw |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | fmpt |  | 
						
							| 6 | 3 5 | mpbi |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | fconstmpt |  | 
						
							| 9 | 8 | cnveqi |  | 
						
							| 10 |  | cnvxp |  | 
						
							| 11 | 9 10 | eqtr3i |  | 
						
							| 12 | 11 | imaeq1i |  | 
						
							| 13 |  | df-ima |  | 
						
							| 14 |  | df-rn |  | 
						
							| 15 | 12 13 14 | 3eqtri |  | 
						
							| 16 |  | df-res |  | 
						
							| 17 |  | inxp |  | 
						
							| 18 |  | inv1 |  | 
						
							| 19 | 18 | xpeq2i |  | 
						
							| 20 | 16 17 19 | 3eqtri |  | 
						
							| 21 | 20 | cnveqi |  | 
						
							| 22 | 21 | dmeqi |  | 
						
							| 23 |  | cnvxp |  | 
						
							| 24 | 23 | dmeqi |  | 
						
							| 25 | 15 22 24 | 3eqtri |  | 
						
							| 26 |  | xpeq2 |  | 
						
							| 27 |  | xp0 |  | 
						
							| 28 | 26 27 | eqtrdi |  | 
						
							| 29 | 28 | dmeqd |  | 
						
							| 30 |  | dm0 |  | 
						
							| 31 | 29 30 | eqtrdi |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 |  | domprobsiga |  | 
						
							| 34 |  | 0elsiga |  | 
						
							| 35 | 1 33 34 | 3syl |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 32 36 | eqeltrd |  | 
						
							| 38 | 25 37 | eqeltrid |  | 
						
							| 39 |  | dmxp |  | 
						
							| 40 | 39 | adantl |  | 
						
							| 41 | 1 | unveldomd |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 | 40 42 | eqeltrd |  | 
						
							| 44 | 25 43 | eqeltrid |  | 
						
							| 45 | 38 44 | pm2.61dane |  | 
						
							| 46 | 45 | ralrimivw |  | 
						
							| 47 | 1 | isrrvv |  | 
						
							| 48 | 7 46 47 | mpbir2and |  |