Metamath Proof Explorer


Theorem 1cubrlem

Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion 1cubrlem 1 2 3 = - 1 + i 3 2 -1 2 3 2 = - 1 - i 3 2

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 neg1ne0 1 0
3 2re 2
4 3nn 3
5 nndivre 2 3 2 3
6 3 4 5 mp2an 2 3
7 6 recni 2 3
8 cxpef 1 1 0 2 3 1 2 3 = e 2 3 log -1
9 1 2 7 8 mp3an 1 2 3 = e 2 3 log -1
10 logm1 log -1 = i π
11 10 oveq2i 2 3 log -1 = 2 3 i π
12 ax-icn i
13 pire π
14 13 recni π
15 7 12 14 mul12i 2 3 i π = i 2 3 π
16 11 15 eqtri 2 3 log -1 = i 2 3 π
17 16 fveq2i e 2 3 log -1 = e i 2 3 π
18 6nn 6
19 nndivre π 6 π 6
20 13 18 19 mp2an π 6
21 20 recni π 6
22 coshalfpip π 6 cos π 2 + π 6 = sin π 6
23 21 22 ax-mp cos π 2 + π 6 = sin π 6
24 2cn 2
25 2ne0 2 0
26 divrec2 π 2 2 0 π 2 = 1 2 π
27 14 24 25 26 mp3an π 2 = 1 2 π
28 6cn 6
29 18 nnne0i 6 0
30 divrec2 π 6 6 0 π 6 = 1 6 π
31 14 28 29 30 mp3an π 6 = 1 6 π
32 27 31 oveq12i π 2 + π 6 = 1 2 π + 1 6 π
33 24 25 reccli 1 2
34 28 29 reccli 1 6
35 33 34 14 adddiri 1 2 + 1 6 π = 1 2 π + 1 6 π
36 halfpm6th 1 2 1 6 = 1 3 1 2 + 1 6 = 2 3
37 36 simpri 1 2 + 1 6 = 2 3
38 37 oveq1i 1 2 + 1 6 π = 2 3 π
39 32 35 38 3eqtr2i π 2 + π 6 = 2 3 π
40 39 fveq2i cos π 2 + π 6 = cos 2 3 π
41 sincos6thpi sin π 6 = 1 2 cos π 6 = 3 2
42 41 simpli sin π 6 = 1 2
43 42 negeqi sin π 6 = 1 2
44 ax-1cn 1
45 divneg 1 2 2 0 1 2 = 1 2
46 44 24 25 45 mp3an 1 2 = 1 2
47 43 46 eqtri sin π 6 = 1 2
48 23 40 47 3eqtr3i cos 2 3 π = 1 2
49 sinhalfpip π 6 sin π 2 + π 6 = cos π 6
50 21 49 ax-mp sin π 2 + π 6 = cos π 6
51 39 fveq2i sin π 2 + π 6 = sin 2 3 π
52 41 simpri cos π 6 = 3 2
53 50 51 52 3eqtr3i sin 2 3 π = 3 2
54 53 oveq2i i sin 2 3 π = i 3 2
55 3re 3
56 3nn0 3 0
57 56 nn0ge0i 0 3
58 resqrtcl 3 0 3 3
59 55 57 58 mp2an 3
60 59 recni 3
61 12 60 24 25 divassi i 3 2 = i 3 2
62 54 61 eqtr4i i sin 2 3 π = i 3 2
63 48 62 oveq12i cos 2 3 π + i sin 2 3 π = 1 2 + i 3 2
64 7 14 mulcli 2 3 π
65 efival 2 3 π e i 2 3 π = cos 2 3 π + i sin 2 3 π
66 64 65 ax-mp e i 2 3 π = cos 2 3 π + i sin 2 3 π
67 12 60 mulcli i 3
68 1 67 24 25 divdiri - 1 + i 3 2 = 1 2 + i 3 2
69 63 66 68 3eqtr4i e i 2 3 π = - 1 + i 3 2
70 9 17 69 3eqtri 1 2 3 = - 1 + i 3 2
71 1z 1
72 root1cj 3 1 -1 2 3 1 = -1 2 3 3 1
73 4 71 72 mp2an -1 2 3 1 = -1 2 3 3 1
74 cxpcl 1 2 3 1 2 3
75 1 7 74 mp2an 1 2 3
76 exp1 1 2 3 -1 2 3 1 = 1 2 3
77 75 76 ax-mp -1 2 3 1 = 1 2 3
78 77 70 eqtri -1 2 3 1 = - 1 + i 3 2
79 78 fveq2i -1 2 3 1 = - 1 + i 3 2
80 1 67 addcli - 1 + i 3
81 80 24 cjdivi 2 0 - 1 + i 3 2 = - 1 + i 3 2
82 25 81 ax-mp - 1 + i 3 2 = - 1 + i 3 2
83 1 67 cjaddi - 1 + i 3 = 1 + i 3
84 neg1rr 1
85 cjre 1 1 = 1
86 84 85 ax-mp 1 = 1
87 12 60 cjmuli i 3 = i 3
88 cji i = i
89 cjre 3 3 = 3
90 59 89 ax-mp 3 = 3
91 88 90 oveq12i i 3 = i 3
92 12 60 mulneg1i i 3 = i 3
93 87 91 92 3eqtri i 3 = i 3
94 86 93 oveq12i 1 + i 3 = - 1 + i 3
95 1 67 negsubi - 1 + i 3 = - 1 - i 3
96 83 94 95 3eqtri - 1 + i 3 = - 1 - i 3
97 cjre 2 2 = 2
98 3 97 ax-mp 2 = 2
99 96 98 oveq12i - 1 + i 3 2 = - 1 - i 3 2
100 79 82 99 3eqtri -1 2 3 1 = - 1 - i 3 2
101 3m1e2 3 1 = 2
102 101 oveq2i -1 2 3 3 1 = -1 2 3 2
103 73 100 102 3eqtr3ri -1 2 3 2 = - 1 - i 3 2
104 70 103 pm3.2i 1 2 3 = - 1 + i 3 2 -1 2 3 2 = - 1 - i 3 2