Metamath Proof Explorer


Theorem 1cubrlem

Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion 1cubrlem 123=-1+i32-1232=-1-i32

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 neg1ne0 10
3 2re 2
4 3nn 3
5 nndivre 2323
6 3 4 5 mp2an 23
7 6 recni 23
8 cxpef 11023123=e23log-1
9 1 2 7 8 mp3an 123=e23log-1
10 logm1 log-1=iπ
11 10 oveq2i 23log-1=23iπ
12 ax-icn i
13 pire π
14 13 recni π
15 7 12 14 mul12i 23iπ=i23π
16 11 15 eqtri 23log-1=i23π
17 16 fveq2i e23log-1=ei23π
18 6nn 6
19 nndivre π6π6
20 13 18 19 mp2an π6
21 20 recni π6
22 coshalfpip π6cosπ2+π6=sinπ6
23 21 22 ax-mp cosπ2+π6=sinπ6
24 2cn 2
25 2ne0 20
26 divrec2 π220π2=12π
27 14 24 25 26 mp3an π2=12π
28 6cn 6
29 18 nnne0i 60
30 divrec2 π660π6=16π
31 14 28 29 30 mp3an π6=16π
32 27 31 oveq12i π2+π6=12π+16π
33 24 25 reccli 12
34 28 29 reccli 16
35 33 34 14 adddiri 12+16π=12π+16π
36 halfpm6th 1216=1312+16=23
37 36 simpri 12+16=23
38 37 oveq1i 12+16π=23π
39 32 35 38 3eqtr2i π2+π6=23π
40 39 fveq2i cosπ2+π6=cos23π
41 sincos6thpi sinπ6=12cosπ6=32
42 41 simpli sinπ6=12
43 42 negeqi sinπ6=12
44 ax-1cn 1
45 divneg 122012=12
46 44 24 25 45 mp3an 12=12
47 43 46 eqtri sinπ6=12
48 23 40 47 3eqtr3i cos23π=12
49 sinhalfpip π6sinπ2+π6=cosπ6
50 21 49 ax-mp sinπ2+π6=cosπ6
51 39 fveq2i sinπ2+π6=sin23π
52 41 simpri cosπ6=32
53 50 51 52 3eqtr3i sin23π=32
54 53 oveq2i isin23π=i32
55 3re 3
56 3nn0 30
57 56 nn0ge0i 03
58 resqrtcl 3033
59 55 57 58 mp2an 3
60 59 recni 3
61 12 60 24 25 divassi i32=i32
62 54 61 eqtr4i isin23π=i32
63 48 62 oveq12i cos23π+isin23π=12+i32
64 7 14 mulcli 23π
65 efival 23πei23π=cos23π+isin23π
66 64 65 ax-mp ei23π=cos23π+isin23π
67 12 60 mulcli i3
68 1 67 24 25 divdiri -1+i32=12+i32
69 63 66 68 3eqtr4i ei23π=-1+i32
70 9 17 69 3eqtri 123=-1+i32
71 1z 1
72 root1cj 31-1231=-12331
73 4 71 72 mp2an -1231=-12331
74 cxpcl 123123
75 1 7 74 mp2an 123
76 exp1 123-1231=123
77 75 76 ax-mp -1231=123
78 77 70 eqtri -1231=-1+i32
79 78 fveq2i -1231=-1+i32
80 1 67 addcli -1+i3
81 80 24 cjdivi 20-1+i32=-1+i32
82 25 81 ax-mp -1+i32=-1+i32
83 1 67 cjaddi -1+i3=1+i3
84 neg1rr 1
85 cjre 11=1
86 84 85 ax-mp 1=1
87 12 60 cjmuli i3=i3
88 cji i=i
89 cjre 33=3
90 59 89 ax-mp 3=3
91 88 90 oveq12i i3=i3
92 12 60 mulneg1i i3=i3
93 87 91 92 3eqtri i3=i3
94 86 93 oveq12i 1+i3=-1+i3
95 1 67 negsubi -1+i3=-1-i3
96 83 94 95 3eqtri -1+i3=-1-i3
97 cjre 22=2
98 3 97 ax-mp 2=2
99 96 98 oveq12i -1+i32=-1-i32
100 79 82 99 3eqtri -1231=-1-i32
101 3m1e2 31=2
102 101 oveq2i -12331=-1232
103 73 100 102 3eqtr3ri -1232=-1-i32
104 70 103 pm3.2i 123=-1+i32-1232=-1-i32