Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Solutions of quadratic, cubic, and quartic equations
1cubrlem
Next ⟩
1cubr
Metamath Proof Explorer
Ascii
Unicode
Theorem
1cubrlem
Description:
The cube roots of unity.
(Contributed by
Mario Carneiro
, 23-Apr-2015)
Ref
Expression
Assertion
1cubrlem
⊢
−
1
2
3
=
-
1
+
i
3
2
∧
-1
2
3
2
=
-
1
-
i
3
2
Proof
Step
Hyp
Ref
Expression
1
neg1cn
⊢
−
1
∈
ℂ
2
neg1ne0
⊢
−
1
≠
0
3
2re
⊢
2
∈
ℝ
4
3nn
⊢
3
∈
ℕ
5
nndivre
⊢
2
∈
ℝ
∧
3
∈
ℕ
→
2
3
∈
ℝ
6
3
4
5
mp2an
⊢
2
3
∈
ℝ
7
6
recni
⊢
2
3
∈
ℂ
8
cxpef
⊢
−
1
∈
ℂ
∧
−
1
≠
0
∧
2
3
∈
ℂ
→
−
1
2
3
=
e
2
3
log
-1
9
1
2
7
8
mp3an
⊢
−
1
2
3
=
e
2
3
log
-1
10
logm1
π
⊢
log
-1
=
i
π
11
10
oveq2i
π
⊢
2
3
log
-1
=
2
3
i
π
12
ax-icn
⊢
i
∈
ℂ
13
pire
π
⊢
π
∈
ℝ
14
13
recni
π
⊢
π
∈
ℂ
15
7
12
14
mul12i
π
π
⊢
2
3
i
π
=
i
2
3
π
16
11
15
eqtri
π
⊢
2
3
log
-1
=
i
2
3
π
17
16
fveq2i
π
⊢
e
2
3
log
-1
=
e
i
2
3
π
18
6nn
⊢
6
∈
ℕ
19
nndivre
π
π
⊢
π
∈
ℝ
∧
6
∈
ℕ
→
π
6
∈
ℝ
20
13
18
19
mp2an
π
⊢
π
6
∈
ℝ
21
20
recni
π
⊢
π
6
∈
ℂ
22
coshalfpip
π
π
π
π
⊢
π
6
∈
ℂ
→
cos
π
2
+
π
6
=
−
sin
π
6
23
21
22
ax-mp
π
π
π
⊢
cos
π
2
+
π
6
=
−
sin
π
6
24
2cn
⊢
2
∈
ℂ
25
2ne0
⊢
2
≠
0
26
divrec2
π
π
π
⊢
π
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
π
2
=
1
2
π
27
14
24
25
26
mp3an
π
π
⊢
π
2
=
1
2
π
28
6cn
⊢
6
∈
ℂ
29
18
nnne0i
⊢
6
≠
0
30
divrec2
π
π
π
⊢
π
∈
ℂ
∧
6
∈
ℂ
∧
6
≠
0
→
π
6
=
1
6
π
31
14
28
29
30
mp3an
π
π
⊢
π
6
=
1
6
π
32
27
31
oveq12i
π
π
π
π
⊢
π
2
+
π
6
=
1
2
π
+
1
6
π
33
24
25
reccli
⊢
1
2
∈
ℂ
34
28
29
reccli
⊢
1
6
∈
ℂ
35
33
34
14
adddiri
π
π
π
⊢
1
2
+
1
6
π
=
1
2
π
+
1
6
π
36
halfpm6th
⊢
1
2
−
1
6
=
1
3
∧
1
2
+
1
6
=
2
3
37
36
simpri
⊢
1
2
+
1
6
=
2
3
38
37
oveq1i
π
π
⊢
1
2
+
1
6
π
=
2
3
π
39
32
35
38
3eqtr2i
π
π
π
⊢
π
2
+
π
6
=
2
3
π
40
39
fveq2i
π
π
π
⊢
cos
π
2
+
π
6
=
cos
2
3
π
41
sincos6thpi
π
π
⊢
sin
π
6
=
1
2
∧
cos
π
6
=
3
2
42
41
simpli
π
⊢
sin
π
6
=
1
2
43
42
negeqi
π
⊢
−
sin
π
6
=
−
1
2
44
ax-1cn
⊢
1
∈
ℂ
45
divneg
⊢
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
−
1
2
=
−
1
2
46
44
24
25
45
mp3an
⊢
−
1
2
=
−
1
2
47
43
46
eqtri
π
⊢
−
sin
π
6
=
−
1
2
48
23
40
47
3eqtr3i
π
⊢
cos
2
3
π
=
−
1
2
49
sinhalfpip
π
π
π
π
⊢
π
6
∈
ℂ
→
sin
π
2
+
π
6
=
cos
π
6
50
21
49
ax-mp
π
π
π
⊢
sin
π
2
+
π
6
=
cos
π
6
51
39
fveq2i
π
π
π
⊢
sin
π
2
+
π
6
=
sin
2
3
π
52
41
simpri
π
⊢
cos
π
6
=
3
2
53
50
51
52
3eqtr3i
π
⊢
sin
2
3
π
=
3
2
54
53
oveq2i
π
⊢
i
sin
2
3
π
=
i
3
2
55
3re
⊢
3
∈
ℝ
56
3nn0
⊢
3
∈
ℕ
0
57
56
nn0ge0i
⊢
0
≤
3
58
resqrtcl
⊢
3
∈
ℝ
∧
0
≤
3
→
3
∈
ℝ
59
55
57
58
mp2an
⊢
3
∈
ℝ
60
59
recni
⊢
3
∈
ℂ
61
12
60
24
25
divassi
⊢
i
3
2
=
i
3
2
62
54
61
eqtr4i
π
⊢
i
sin
2
3
π
=
i
3
2
63
48
62
oveq12i
π
π
⊢
cos
2
3
π
+
i
sin
2
3
π
=
−
1
2
+
i
3
2
64
7
14
mulcli
π
⊢
2
3
π
∈
ℂ
65
efival
π
π
π
π
⊢
2
3
π
∈
ℂ
→
e
i
2
3
π
=
cos
2
3
π
+
i
sin
2
3
π
66
64
65
ax-mp
π
π
π
⊢
e
i
2
3
π
=
cos
2
3
π
+
i
sin
2
3
π
67
12
60
mulcli
⊢
i
3
∈
ℂ
68
1
67
24
25
divdiri
⊢
-
1
+
i
3
2
=
−
1
2
+
i
3
2
69
63
66
68
3eqtr4i
π
⊢
e
i
2
3
π
=
-
1
+
i
3
2
70
9
17
69
3eqtri
⊢
−
1
2
3
=
-
1
+
i
3
2
71
1z
⊢
1
∈
ℤ
72
root1cj
⊢
3
∈
ℕ
∧
1
∈
ℤ
→
-1
2
3
1
‾
=
-1
2
3
3
−
1
73
4
71
72
mp2an
⊢
-1
2
3
1
‾
=
-1
2
3
3
−
1
74
cxpcl
⊢
−
1
∈
ℂ
∧
2
3
∈
ℂ
→
−
1
2
3
∈
ℂ
75
1
7
74
mp2an
⊢
−
1
2
3
∈
ℂ
76
exp1
⊢
−
1
2
3
∈
ℂ
→
-1
2
3
1
=
−
1
2
3
77
75
76
ax-mp
⊢
-1
2
3
1
=
−
1
2
3
78
77
70
eqtri
⊢
-1
2
3
1
=
-
1
+
i
3
2
79
78
fveq2i
⊢
-1
2
3
1
‾
=
-
1
+
i
3
2
‾
80
1
67
addcli
⊢
-
1
+
i
3
∈
ℂ
81
80
24
cjdivi
⊢
2
≠
0
→
-
1
+
i
3
2
‾
=
-
1
+
i
3
‾
2
‾
82
25
81
ax-mp
⊢
-
1
+
i
3
2
‾
=
-
1
+
i
3
‾
2
‾
83
1
67
cjaddi
⊢
-
1
+
i
3
‾
=
−
1
‾
+
i
3
‾
84
neg1rr
⊢
−
1
∈
ℝ
85
cjre
⊢
−
1
∈
ℝ
→
−
1
‾
=
−
1
86
84
85
ax-mp
⊢
−
1
‾
=
−
1
87
12
60
cjmuli
⊢
i
3
‾
=
i
‾
3
‾
88
cji
⊢
i
‾
=
−
i
89
cjre
⊢
3
∈
ℝ
→
3
‾
=
3
90
59
89
ax-mp
⊢
3
‾
=
3
91
88
90
oveq12i
⊢
i
‾
3
‾
=
−
i
3
92
12
60
mulneg1i
⊢
−
i
3
=
−
i
3
93
87
91
92
3eqtri
⊢
i
3
‾
=
−
i
3
94
86
93
oveq12i
⊢
−
1
‾
+
i
3
‾
=
-
1
+
−
i
3
95
1
67
negsubi
⊢
-
1
+
−
i
3
=
-
1
-
i
3
96
83
94
95
3eqtri
⊢
-
1
+
i
3
‾
=
-
1
-
i
3
97
cjre
⊢
2
∈
ℝ
→
2
‾
=
2
98
3
97
ax-mp
⊢
2
‾
=
2
99
96
98
oveq12i
⊢
-
1
+
i
3
‾
2
‾
=
-
1
-
i
3
2
100
79
82
99
3eqtri
⊢
-1
2
3
1
‾
=
-
1
-
i
3
2
101
3m1e2
⊢
3
−
1
=
2
102
101
oveq2i
⊢
-1
2
3
3
−
1
=
-1
2
3
2
103
73
100
102
3eqtr3ri
⊢
-1
2
3
2
=
-
1
-
i
3
2
104
70
103
pm3.2i
⊢
−
1
2
3
=
-
1
+
i
3
2
∧
-1
2
3
2
=
-
1
-
i
3
2