Metamath Proof Explorer


Theorem 1egrvtxdg0

Description: The vertex degree of a one-edge graph, case 1: an edge between two vertices other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 22-Dec-2017) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1egrvtxdg1.v φVtxG=V
1egrvtxdg1.a φAX
1egrvtxdg1.b φBV
1egrvtxdg1.c φCV
1egrvtxdg1.n φBC
1egrvtxdg0.d φDV
1egrvtxdg0.n φCD
1egrvtxdg0.i φiEdgG=ABD
Assertion 1egrvtxdg0 φVtxDegGC=0

Proof

Step Hyp Ref Expression
1 1egrvtxdg1.v φVtxG=V
2 1egrvtxdg1.a φAX
3 1egrvtxdg1.b φBV
4 1egrvtxdg1.c φCV
5 1egrvtxdg1.n φBC
6 1egrvtxdg0.d φDV
7 1egrvtxdg0.n φCD
8 1egrvtxdg0.i φiEdgG=ABD
9 1 adantl B=DφVtxG=V
10 2 adantl B=DφAX
11 3 adantl B=DφBV
12 8 adantl B=DφiEdgG=ABD
13 preq2 D=BBD=BB
14 13 eqcoms B=DBD=BB
15 dfsn2 B=BB
16 14 15 eqtr4di B=DBD=B
17 16 adantr B=DφBD=B
18 17 opeq2d B=DφABD=AB
19 18 sneqd B=DφABD=AB
20 12 19 eqtrd B=DφiEdgG=AB
21 5 necomd φCB
22 4 21 jca φCVCB
23 eldifsn CVBCVCB
24 22 23 sylibr φCVB
25 24 adantl B=DφCVB
26 9 10 11 20 25 1loopgrvd0 B=DφVtxDegGC=0
27 26 ex B=DφVtxDegGC=0
28 necom BCCB
29 df-ne CB¬C=B
30 28 29 sylbb BC¬C=B
31 5 30 syl φ¬C=B
32 7 neneqd φ¬C=D
33 31 32 jca φ¬C=B¬C=D
34 33 adantl BDφ¬C=B¬C=D
35 ioran ¬C=BC=D¬C=B¬C=D
36 34 35 sylibr BDφ¬C=BC=D
37 edgval EdgG=raniEdgG
38 8 rneqd φraniEdgG=ranABD
39 rnsnopg AXranABD=BD
40 2 39 syl φranABD=BD
41 38 40 eqtrd φraniEdgG=BD
42 37 41 eqtrid φEdgG=BD
43 42 adantl BDφEdgG=BD
44 43 rexeqdv BDφeEdgGCeeBDCe
45 prex BDV
46 eleq2 e=BDCeCBD
47 46 rexsng BDVeBDCeCBD
48 45 47 mp1i BDφeBDCeCBD
49 elprg CVCBDC=BC=D
50 4 49 syl φCBDC=BC=D
51 50 adantl BDφCBDC=BC=D
52 44 48 51 3bitrd BDφeEdgGCeC=BC=D
53 36 52 mtbird BDφ¬eEdgGCe
54 eqid VtxG=VtxG
55 2 adantl BDφAX
56 3 1 eleqtrrd φBVtxG
57 56 adantl BDφBVtxG
58 6 1 eleqtrrd φDVtxG
59 58 adantl BDφDVtxG
60 8 adantl BDφiEdgG=ABD
61 simpl BDφBD
62 54 55 57 59 60 61 usgr1e BDφGUSGraph
63 4 1 eleqtrrd φCVtxG
64 63 adantl BDφCVtxG
65 eqid EdgG=EdgG
66 eqid VtxDegG=VtxDegG
67 54 65 66 vtxdusgr0edgnel GUSGraphCVtxGVtxDegGC=0¬eEdgGCe
68 62 64 67 syl2anc BDφVtxDegGC=0¬eEdgGCe
69 53 68 mpbird BDφVtxDegGC=0
70 69 ex BDφVtxDegGC=0
71 27 70 pm2.61ine φVtxDegGC=0