Metamath Proof Explorer


Theorem 1marepvsma1

Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019) (Revised by AV, 27-Feb-2019)

Ref Expression
Hypotheses 1marepvsma1.v V=BaseRN
1marepvsma1.1 1˙=1NMatR
1marepvsma1.x X=1˙NmatRepVRZI
Assertion 1marepvsma1 RRingNFinINZVINsubMatRXI=1NIMatR

Proof

Step Hyp Ref Expression
1 1marepvsma1.v V=BaseRN
2 1marepvsma1.1 1˙=1NMatR
3 1marepvsma1.x X=1˙NmatRepVRZI
4 3 oveqi iXj=i1˙NmatRepVRZIj
5 4 a1i RRingNFinINZViNIjNIiXj=i1˙NmatRepVRZIj
6 eqid NMatR=NMatR
7 eqid BaseNMatR=BaseNMatR
8 6 7 2 mat1bas RRingNFin1˙BaseNMatR
9 8 adantr RRingNFinINZV1˙BaseNMatR
10 simprr RRingNFinINZVZV
11 simprl RRingNFinINZVIN
12 9 10 11 3jca RRingNFinINZV1˙BaseNMatRZVIN
13 12 3ad2ant1 RRingNFinINZViNIjNI1˙BaseNMatRZVIN
14 eldifi iNIiN
15 eldifi jNIjN
16 14 15 anim12i iNIjNIiNjN
17 16 3adant1 RRingNFinINZViNIjNIiNjN
18 eqid NmatRepVR=NmatRepVR
19 6 7 18 1 marepveval 1˙BaseNMatRZVINiNjNi1˙NmatRepVRZIj=ifj=IZii1˙j
20 13 17 19 syl2anc RRingNFinINZViNIjNIi1˙NmatRepVRZIj=ifj=IZii1˙j
21 eldifsni jNIjI
22 21 neneqd jNI¬j=I
23 22 3ad2ant3 RRingNFinINZViNIjNI¬j=I
24 23 iffalsed RRingNFinINZViNIjNIifj=IZii1˙j=i1˙j
25 eqid 1R=1R
26 eqid 0R=0R
27 simp1lr RRingNFinINZViNIjNINFin
28 simp1ll RRingNFinINZViNIjNIRRing
29 14 3ad2ant2 RRingNFinINZViNIjNIiN
30 15 3ad2ant3 RRingNFinINZViNIjNIjN
31 6 25 26 27 28 29 30 2 mat1ov RRingNFinINZViNIjNIi1˙j=ifi=j1R0R
32 24 31 eqtrd RRingNFinINZViNIjNIifj=IZii1˙j=ifi=j1R0R
33 5 20 32 3eqtrd RRingNFinINZViNIjNIiXj=ifi=j1R0R
34 33 mpoeq3dva RRingNFinINZViNI,jNIiXj=iNI,jNIifi=j1R0R
35 6 7 1 2 ma1repvcl RRingNFinZVIN1˙NmatRepVRZIBaseNMatR
36 35 ancom2s RRingNFinINZV1˙NmatRepVRZIBaseNMatR
37 3 36 eqeltrid RRingNFinINZVXBaseNMatR
38 eqid NsubMatR=NsubMatR
39 6 38 7 submaval XBaseNMatRINININsubMatRXI=iNI,jNIiXj
40 37 11 11 39 syl3anc RRingNFinINZVINsubMatRXI=iNI,jNIiXj
41 diffi NFinNIFin
42 41 anim2i RRingNFinRRingNIFin
43 42 ancomd RRingNFinNIFinRRing
44 43 adantr RRingNFinINZVNIFinRRing
45 eqid NIMatR=NIMatR
46 45 25 26 mat1 NIFinRRing1NIMatR=iNI,jNIifi=j1R0R
47 44 46 syl RRingNFinINZV1NIMatR=iNI,jNIifi=j1R0R
48 34 40 47 3eqtr4d RRingNFinINZVINsubMatRXI=1NIMatR