Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019) (Revised by AV, 27-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1marepvsma1.v | |
|
1marepvsma1.1 | |
||
1marepvsma1.x | |
||
Assertion | 1marepvsma1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1marepvsma1.v | |
|
2 | 1marepvsma1.1 | |
|
3 | 1marepvsma1.x | |
|
4 | 3 | oveqi | |
5 | 4 | a1i | |
6 | eqid | |
|
7 | eqid | |
|
8 | 6 7 2 | mat1bas | |
9 | 8 | adantr | |
10 | simprr | |
|
11 | simprl | |
|
12 | 9 10 11 | 3jca | |
13 | 12 | 3ad2ant1 | |
14 | eldifi | |
|
15 | eldifi | |
|
16 | 14 15 | anim12i | |
17 | 16 | 3adant1 | |
18 | eqid | |
|
19 | 6 7 18 1 | marepveval | |
20 | 13 17 19 | syl2anc | |
21 | eldifsni | |
|
22 | 21 | neneqd | |
23 | 22 | 3ad2ant3 | |
24 | 23 | iffalsed | |
25 | eqid | |
|
26 | eqid | |
|
27 | simp1lr | |
|
28 | simp1ll | |
|
29 | 14 | 3ad2ant2 | |
30 | 15 | 3ad2ant3 | |
31 | 6 25 26 27 28 29 30 2 | mat1ov | |
32 | 24 31 | eqtrd | |
33 | 5 20 32 | 3eqtrd | |
34 | 33 | mpoeq3dva | |
35 | 6 7 1 2 | ma1repvcl | |
36 | 35 | ancom2s | |
37 | 3 36 | eqeltrid | |
38 | eqid | |
|
39 | 6 38 7 | submaval | |
40 | 37 11 11 39 | syl3anc | |
41 | diffi | |
|
42 | 41 | anim2i | |
43 | 42 | ancomd | |
44 | 43 | adantr | |
45 | eqid | |
|
46 | 45 25 26 | mat1 | |
47 | 44 46 | syl | |
48 | 34 40 47 | 3eqtr4d | |