Description: The second supplement to the law of quadratic reciprocity (for the Legendre symbol extended to arbitrary primes as second argument). Two is a square modulo a prime P iff P == +- 1 (mod 8 ), see first case of theorem 9.5 in ApostolNT p. 181. This theorem justifies our definition of ( N /L 2 ) ( lgs2 ) to some degree, by demanding that reciprocity extend to the case Q = 2 . (Proposed by Mario Carneiro, 19-Jun-2015.) (Contributed by AV, 16-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prm2orodd | |
|
2 | 2lgslem4 | |
|
3 | 2 | a1i | |
4 | oveq2 | |
|
5 | 4 | eqeq1d | |
6 | oveq1 | |
|
7 | 6 | eleq1d | |
8 | 3 5 7 | 3bitr4d | |
9 | 8 | a1d | |
10 | 2prm | |
|
11 | prmnn | |
|
12 | dvdsprime | |
|
13 | 10 11 12 | sylancr | |
14 | z2even | |
|
15 | breq2 | |
|
16 | 14 15 | mpbiri | |
17 | 16 | a1d | |
18 | eleq1 | |
|
19 | 1nprm | |
|
20 | 19 | pm2.21i | |
21 | 18 20 | syl6bi | |
22 | 17 21 | jaoi | |
23 | 22 | com12 | |
24 | 13 23 | sylbid | |
25 | 24 | con3dimp | |
26 | 2z | |
|
27 | 25 26 | jctil | |
28 | 2lgslem1 | |
|
29 | 28 | eqcomd | |
30 | nnoddn2prmb | |
|
31 | 30 | biimpri | |
32 | 31 | 3ad2ant1 | |
33 | eqid | |
|
34 | eqid | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | 32 33 34 35 36 | gausslemma2d | |
38 | 37 | eqeq1d | |
39 | 27 29 38 | mpd3an23 | |
40 | 36 | 2lgslem2 | |
41 | m1exp1 | |
|
42 | 40 41 | syl | |
43 | 2nn | |
|
44 | dvdsval3 | |
|
45 | 43 40 44 | sylancr | |
46 | 36 | 2lgslem3 | |
47 | 11 46 | sylan | |
48 | 47 | eqeq1d | |
49 | ax-1 | |
|
50 | iffalse | |
|
51 | 50 | eqeq1d | |
52 | ax-1ne0 | |
|
53 | eqneqall | |
|
54 | 52 53 | mpi | |
55 | 51 54 | syl6bi | |
56 | 49 55 | pm2.61i | |
57 | iftrue | |
|
58 | 56 57 | impbii | |
59 | 58 | a1i | |
60 | 45 48 59 | 3bitrd | |
61 | 39 42 60 | 3bitrd | |
62 | 61 | expcom | |
63 | 9 62 | jaoi | |
64 | 1 63 | mpcom | |