Description: Lemma 2 for 2lgslem1a . (Contributed by AV, 18-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | 2lgslem1a2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |
|
2 | 1 | rehalfcld | |
3 | 2 | adantr | |
4 | id | |
|
5 | 2z | |
|
6 | 5 | a1i | |
7 | 4 6 | zmulcld | |
8 | 7 | zred | |
9 | 8 | adantl | |
10 | 2re | |
|
11 | 2pos | |
|
12 | 10 11 | pm3.2i | |
13 | 12 | a1i | |
14 | ltdiv1 | |
|
15 | 3 9 13 14 | syl3anc | |
16 | zcn | |
|
17 | 16 | adantr | |
18 | 2cnne0 | |
|
19 | 18 | a1i | |
20 | divdiv1 | |
|
21 | 17 19 19 20 | syl3anc | |
22 | 2t2e4 | |
|
23 | 22 | oveq2i | |
24 | 21 23 | eqtrdi | |
25 | zcn | |
|
26 | 25 | adantl | |
27 | 2cnd | |
|
28 | 2ne0 | |
|
29 | 28 | a1i | |
30 | 26 27 29 | divcan4d | |
31 | 24 30 | breq12d | |
32 | 4re | |
|
33 | 32 | a1i | |
34 | 4ne0 | |
|
35 | 34 | a1i | |
36 | 1 33 35 | redivcld | |
37 | fllt | |
|
38 | 36 37 | sylan | |
39 | 15 31 38 | 3bitrrd | |