Metamath Proof Explorer


Theorem 2lgslem1a2

Description: Lemma 2 for 2lgslem1a . (Contributed by AV, 18-Jun-2021)

Ref Expression
Assertion 2lgslem1a2 NIN4<IN2< I2

Proof

Step Hyp Ref Expression
1 zre NN
2 1 rehalfcld NN2
3 2 adantr NIN2
4 id II
5 2z 2
6 5 a1i I2
7 4 6 zmulcld I I2
8 7 zred I I2
9 8 adantl NI I2
10 2re 2
11 2pos 0<2
12 10 11 pm3.2i 20<2
13 12 a1i NI20<2
14 ltdiv1 N2 I220<2N2< I2N22< I22
15 3 9 13 14 syl3anc NIN2< I2N22< I22
16 zcn NN
17 16 adantr NIN
18 2cnne0 220
19 18 a1i NI220
20 divdiv1 N220220N22=N22
21 17 19 19 20 syl3anc NIN22=N22
22 2t2e4 22=4
23 22 oveq2i N22=N4
24 21 23 eqtrdi NIN22=N4
25 zcn II
26 25 adantl NII
27 2cnd NI2
28 2ne0 20
29 28 a1i NI20
30 26 27 29 divcan4d NI I22=I
31 24 30 breq12d NIN22< I22N4<I
32 4re 4
33 32 a1i N4
34 4ne0 40
35 34 a1i N40
36 1 33 35 redivcld NN4
37 fllt N4IN4<IN4<I
38 36 37 sylan NIN4<IN4<I
39 15 31 38 3bitrrd NIN4<IN2< I2