Description: Lemma 4 for 2lgslem3 . (Contributed by AV, 15-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2lgslem2.n | |
|
Assertion | 2lgslem3d1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2lgslem2.n | |
|
2 | nnnn0 | |
|
3 | 8nn | |
|
4 | nnrp | |
|
5 | 3 4 | ax-mp | |
6 | modmuladdnn0 | |
|
7 | 2 5 6 | sylancl | |
8 | simpr | |
|
9 | nn0cn | |
|
10 | 8cn | |
|
11 | 10 | a1i | |
12 | 9 11 | mulcomd | |
13 | 12 | adantl | |
14 | 13 | oveq1d | |
15 | 14 | eqeq2d | |
16 | 15 | biimpa | |
17 | 1 | 2lgslem3d | |
18 | 8 16 17 | syl2an2r | |
19 | oveq1 | |
|
20 | 2t1e2 | |
|
21 | 20 | eqcomi | |
22 | 21 | a1i | |
23 | 22 | oveq2d | |
24 | 2cnd | |
|
25 | 1cnd | |
|
26 | adddi | |
|
27 | 26 | eqcomd | |
28 | 24 9 25 27 | syl3anc | |
29 | 9 25 | addcld | |
30 | 24 29 | mulcomd | |
31 | 23 28 30 | 3eqtrd | |
32 | 31 | oveq1d | |
33 | peano2nn0 | |
|
34 | 33 | nn0zd | |
35 | 2rp | |
|
36 | mulmod0 | |
|
37 | 34 35 36 | sylancl | |
38 | 32 37 | eqtrd | |
39 | 19 38 | sylan9eqr | |
40 | 8 18 39 | syl2an2r | |
41 | 40 | rexlimdva2 | |
42 | 7 41 | syld | |
43 | 42 | imp | |