Metamath Proof Explorer


Theorem 3cubeslem4

Description: Lemma for 3cubes . This is Ryley's explicit formula for decomposing a rational A into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φA
Assertion 3cubeslem4 φA=33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φA
2 3re 3
3 2 a1i 3
4 3nn0 30
5 4 a1i 30
6 3 5 reexpcld 33
7 6 mptru 33
8 7 a1i φ33
9 qre AA
10 4 a1i A30
11 9 10 reexpcld AA3
12 1 11 syl φA3
13 8 12 remulcld φ33A3
14 1red φ1
15 13 14 resubcld φ33A31
16 15 recnd φ33A31
17 4 a1i φ30
18 16 17 expcld φ33A313
19 13 renegcld φ33A3
20 19 recnd φ33A3
21 2 a1i φ3
22 21 recnd φ3
23 22 sqcld φ32
24 qcn AA
25 1 24 syl φA
26 23 25 mulcld φ32A
27 20 26 addcld φ-33A3+32A
28 1cnd φ1
29 27 28 addcld φ33A3+32A+1
30 29 17 expcld φ33A3+32A+13
31 8 recnd φ33
32 25 sqcld φA2
33 31 32 mulcld φ33A2
34 33 26 addcld φ33A2+32A
35 34 22 addcld φ33A2+32A+3
36 35 17 expcld φ33A2+32A+33
37 1 3cubeslem2 φ¬33A2+32A+3=0
38 37 neqned φ33A2+32A+30
39 3z 3
40 39 a1i φ3
41 35 38 40 expne0d φ33A2+32A+330
42 18 30 36 41 divdird φ33A313+33A3+32A+1333A2+32A+33=33A31333A2+32A+33+33A3+32A+1333A2+32A+33
43 42 oveq1d φ33A313+33A3+32A+1333A2+32A+33+33A2+32A333A2+32A+33=33A31333A2+32A+33+33A3+32A+1333A2+32A+33+33A2+32A333A2+32A+33
44 18 30 addcld φ33A313+33A3+32A+13
45 34 17 expcld φ33A2+32A3
46 44 45 36 41 divdird φ33A313+33A3+32A+13+33A2+32A333A2+32A+33=33A313+33A3+32A+1333A2+32A+33+33A2+32A333A2+32A+33
47 16 35 38 17 expdivd φ33A3133A2+32A+33=33A31333A2+32A+33
48 47 oveq1d φ33A3133A2+32A+33+33A3+32A+133A2+32A+33=33A31333A2+32A+33+33A3+32A+133A2+32A+33
49 48 oveq1d φ33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33=33A31333A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33
50 29 35 38 17 expdivd φ33A3+32A+133A2+32A+33=33A3+32A+1333A2+32A+33
51 50 oveq2d φ33A31333A2+32A+33+33A3+32A+133A2+32A+33=33A31333A2+32A+33+33A3+32A+1333A2+32A+33
52 51 oveq1d φ33A31333A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33=33A31333A2+32A+33+33A3+32A+1333A2+32A+33+33A2+32A33A2+32A+33
53 34 35 38 17 expdivd φ33A2+32A33A2+32A+33=33A2+32A333A2+32A+33
54 53 oveq2d φ33A31333A2+32A+33+33A3+32A+1333A2+32A+33+33A2+32A33A2+32A+33=33A31333A2+32A+33+33A3+32A+1333A2+32A+33+33A2+32A333A2+32A+33
55 49 52 54 3eqtrd φ33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33=33A31333A2+32A+33+33A3+32A+1333A2+32A+33+33A2+32A333A2+32A+33
56 43 46 55 3eqtr4rd φ33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33=33A313+33A3+32A+13+33A2+32A333A2+32A+33
57 1 3cubeslem3 φA33A2+32A+33=33A313+33A3+32A+13+33A2+32A3
58 57 oveq1d φA33A2+32A+3333A2+32A+33=33A313+33A3+32A+13+33A2+32A333A2+32A+33
59 25 36 41 divcan4d φA33A2+32A+3333A2+32A+33=A
60 56 58 59 3eqtr2rd φA=33A3133A2+32A+33+33A3+32A+133A2+32A+33+33A2+32A33A2+32A+33