Metamath Proof Explorer


Theorem 3cubeslem4

Description: Lemma for 3cubes . This is Ryley's explicit formula for decomposing a rational A into a sum of three rational cubes. (Contributed by Igor Ieskov, 22-Jan-2024)

Ref Expression
Hypothesis 3cubeslem1.a φ A
Assertion 3cubeslem4 φ A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3

Proof

Step Hyp Ref Expression
1 3cubeslem1.a φ A
2 3re 3
3 2 a1i 3
4 3nn0 3 0
5 4 a1i 3 0
6 3 5 reexpcld 3 3
7 6 mptru 3 3
8 7 a1i φ 3 3
9 qre A A
10 4 a1i A 3 0
11 9 10 reexpcld A A 3
12 1 11 syl φ A 3
13 8 12 remulcld φ 3 3 A 3
14 1red φ 1
15 13 14 resubcld φ 3 3 A 3 1
16 15 recnd φ 3 3 A 3 1
17 4 a1i φ 3 0
18 16 17 expcld φ 3 3 A 3 1 3
19 13 renegcld φ 3 3 A 3
20 19 recnd φ 3 3 A 3
21 2 a1i φ 3
22 21 recnd φ 3
23 22 sqcld φ 3 2
24 qcn A A
25 1 24 syl φ A
26 23 25 mulcld φ 3 2 A
27 20 26 addcld φ - 3 3 A 3 + 3 2 A
28 1cnd φ 1
29 27 28 addcld φ 3 3 A 3 + 3 2 A + 1
30 29 17 expcld φ 3 3 A 3 + 3 2 A + 1 3
31 8 recnd φ 3 3
32 25 sqcld φ A 2
33 31 32 mulcld φ 3 3 A 2
34 33 26 addcld φ 3 3 A 2 + 3 2 A
35 34 22 addcld φ 3 3 A 2 + 3 2 A + 3
36 35 17 expcld φ 3 3 A 2 + 3 2 A + 3 3
37 1 3cubeslem2 φ ¬ 3 3 A 2 + 3 2 A + 3 = 0
38 37 neqned φ 3 3 A 2 + 3 2 A + 3 0
39 3z 3
40 39 a1i φ 3
41 35 38 40 expne0d φ 3 3 A 2 + 3 2 A + 3 3 0
42 18 30 36 41 divdird φ 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3
43 42 oveq1d φ 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
44 18 30 addcld φ 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3
45 34 17 expcld φ 3 3 A 2 + 3 2 A 3
46 44 45 36 41 divdird φ 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
47 16 35 38 17 expdivd φ 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3
48 47 oveq1d φ 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3
49 48 oveq1d φ 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3
50 29 35 38 17 expdivd φ 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3
51 50 oveq2d φ 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3
52 51 oveq1d φ 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3
53 34 35 38 17 expdivd φ 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
54 53 oveq2d φ 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
55 49 52 54 3eqtrd φ 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
56 43 46 55 3eqtr4rd φ 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
57 1 3cubeslem3 φ A 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3
58 57 oveq1d φ A 3 3 A 2 + 3 2 A + 3 3 3 3 A 2 + 3 2 A + 3 3 = 3 3 A 3 1 3 + 3 3 A 3 + 3 2 A + 1 3 + 3 3 A 2 + 3 2 A 3 3 3 A 2 + 3 2 A + 3 3
59 25 36 41 divcan4d φ A 3 3 A 2 + 3 2 A + 3 3 3 3 A 2 + 3 2 A + 3 3 = A
60 56 58 59 3eqtr2rd φ A = 3 3 A 3 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 3 + 3 2 A + 1 3 3 A 2 + 3 2 A + 3 3 + 3 3 A 2 + 3 2 A 3 3 A 2 + 3 2 A + 3 3