Step |
Hyp |
Ref |
Expression |
1 |
|
3cubeslem1.a |
|
2 |
|
3re |
|
3 |
2
|
a1i |
|
4 |
|
3nn0 |
|
5 |
4
|
a1i |
|
6 |
3 5
|
reexpcld |
|
7 |
6
|
mptru |
|
8 |
7
|
a1i |
|
9 |
|
qre |
|
10 |
4
|
a1i |
|
11 |
9 10
|
reexpcld |
|
12 |
1 11
|
syl |
|
13 |
8 12
|
remulcld |
|
14 |
|
1red |
|
15 |
13 14
|
resubcld |
|
16 |
15
|
recnd |
|
17 |
4
|
a1i |
|
18 |
16 17
|
expcld |
|
19 |
13
|
renegcld |
|
20 |
19
|
recnd |
|
21 |
2
|
a1i |
|
22 |
21
|
recnd |
|
23 |
22
|
sqcld |
|
24 |
|
qcn |
|
25 |
1 24
|
syl |
|
26 |
23 25
|
mulcld |
|
27 |
20 26
|
addcld |
|
28 |
|
1cnd |
|
29 |
27 28
|
addcld |
|
30 |
29 17
|
expcld |
|
31 |
8
|
recnd |
|
32 |
25
|
sqcld |
|
33 |
31 32
|
mulcld |
|
34 |
33 26
|
addcld |
|
35 |
34 22
|
addcld |
|
36 |
35 17
|
expcld |
|
37 |
1
|
3cubeslem2 |
|
38 |
37
|
neqned |
|
39 |
|
3z |
|
40 |
39
|
a1i |
|
41 |
35 38 40
|
expne0d |
|
42 |
18 30 36 41
|
divdird |
|
43 |
42
|
oveq1d |
|
44 |
18 30
|
addcld |
|
45 |
34 17
|
expcld |
|
46 |
44 45 36 41
|
divdird |
|
47 |
16 35 38 17
|
expdivd |
|
48 |
47
|
oveq1d |
|
49 |
48
|
oveq1d |
|
50 |
29 35 38 17
|
expdivd |
|
51 |
50
|
oveq2d |
|
52 |
51
|
oveq1d |
|
53 |
34 35 38 17
|
expdivd |
|
54 |
53
|
oveq2d |
|
55 |
49 52 54
|
3eqtrd |
|
56 |
43 46 55
|
3eqtr4rd |
|
57 |
1
|
3cubeslem3 |
|
58 |
57
|
oveq1d |
|
59 |
25 36 41
|
divcan4d |
|
60 |
56 58 59
|
3eqtr2rd |
|