| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cubeslem1.a |  | 
						
							| 2 |  | 3re |  | 
						
							| 3 | 2 | a1i |  | 
						
							| 4 |  | 3nn0 |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 | 3 5 | reexpcld |  | 
						
							| 7 | 6 | mptru |  | 
						
							| 8 | 7 | a1i |  | 
						
							| 9 |  | qre |  | 
						
							| 10 | 4 | a1i |  | 
						
							| 11 | 9 10 | reexpcld |  | 
						
							| 12 | 1 11 | syl |  | 
						
							| 13 | 8 12 | remulcld |  | 
						
							| 14 |  | 1red |  | 
						
							| 15 | 13 14 | resubcld |  | 
						
							| 16 | 15 | recnd |  | 
						
							| 17 | 4 | a1i |  | 
						
							| 18 | 16 17 | expcld |  | 
						
							| 19 | 13 | renegcld |  | 
						
							| 20 | 19 | recnd |  | 
						
							| 21 | 2 | a1i |  | 
						
							| 22 | 21 | recnd |  | 
						
							| 23 | 22 | sqcld |  | 
						
							| 24 |  | qcn |  | 
						
							| 25 | 1 24 | syl |  | 
						
							| 26 | 23 25 | mulcld |  | 
						
							| 27 | 20 26 | addcld |  | 
						
							| 28 |  | 1cnd |  | 
						
							| 29 | 27 28 | addcld |  | 
						
							| 30 | 29 17 | expcld |  | 
						
							| 31 | 8 | recnd |  | 
						
							| 32 | 25 | sqcld |  | 
						
							| 33 | 31 32 | mulcld |  | 
						
							| 34 | 33 26 | addcld |  | 
						
							| 35 | 34 22 | addcld |  | 
						
							| 36 | 35 17 | expcld |  | 
						
							| 37 | 1 | 3cubeslem2 |  | 
						
							| 38 | 37 | neqned |  | 
						
							| 39 |  | 3z |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 | 35 38 40 | expne0d |  | 
						
							| 42 | 18 30 36 41 | divdird |  | 
						
							| 43 | 42 | oveq1d |  | 
						
							| 44 | 18 30 | addcld |  | 
						
							| 45 | 34 17 | expcld |  | 
						
							| 46 | 44 45 36 41 | divdird |  | 
						
							| 47 | 16 35 38 17 | expdivd |  | 
						
							| 48 | 47 | oveq1d |  | 
						
							| 49 | 48 | oveq1d |  | 
						
							| 50 | 29 35 38 17 | expdivd |  | 
						
							| 51 | 50 | oveq2d |  | 
						
							| 52 | 51 | oveq1d |  | 
						
							| 53 | 34 35 38 17 | expdivd |  | 
						
							| 54 | 53 | oveq2d |  | 
						
							| 55 | 49 52 54 | 3eqtrd |  | 
						
							| 56 | 43 46 55 | 3eqtr4rd |  | 
						
							| 57 | 1 | 3cubeslem3 |  | 
						
							| 58 | 57 | oveq1d |  | 
						
							| 59 | 25 36 41 | divcan4d |  | 
						
							| 60 | 56 58 59 | 3eqtr2rd |  |