Metamath Proof Explorer


Theorem 3cyclfrgrrn1

Description: Every vertex in a friendship graph (with more than 1 vertex) is part of a 3-cycle. (Contributed by Alexander van der Vekens, 16-Nov-2017) (Revised by AV, 2-Apr-2021)

Ref Expression
Hypotheses 3cyclfrgrrn1.v V=VtxG
3cyclfrgrrn1.e E=EdgG
Assertion 3cyclfrgrrn1 GFriendGraphAVCVACbVcVAbEbcEcAE

Proof

Step Hyp Ref Expression
1 3cyclfrgrrn1.v V=VtxG
2 3cyclfrgrrn1.e E=EdgG
3 1 2 2pthfrgrrn2 GFriendGraphaVzVaxVaxExzEaxxz
4 necom ACCA
5 eldifsn CVACVCA
6 5 simplbi2com CACVCVA
7 4 6 sylbi ACCVCVA
8 7 com12 CVACCVA
9 8 adantl AVCVACCVA
10 9 imp AVCVACCVA
11 sneq a=Aa=A
12 11 difeq2d a=AVa=VA
13 preq1 a=Aax=Ax
14 13 eleq1d a=AaxEAxE
15 14 anbi1d a=AaxExzEAxExzE
16 neeq1 a=AaxAx
17 16 anbi1d a=AaxxzAxxz
18 15 17 anbi12d a=AaxExzEaxxzAxExzEAxxz
19 18 rexbidv a=AxVaxExzEaxxzxVAxExzEAxxz
20 12 19 raleqbidv a=AzVaxVaxExzEaxxzzVAxVAxExzEAxxz
21 20 rspcv AVaVzVaxVaxExzEaxxzzVAxVAxExzEAxxz
22 21 ad2antrr AVCVACaVzVaxVaxExzEaxxzzVAxVAxExzEAxxz
23 preq2 z=Cxz=xC
24 23 eleq1d z=CxzExCE
25 24 anbi2d z=CAxExzEAxExCE
26 neeq2 z=CxzxC
27 26 anbi2d z=CAxxzAxxC
28 25 27 anbi12d z=CAxExzEAxxzAxExCEAxxC
29 28 rexbidv z=CxVAxExzEAxxzxVAxExCEAxxC
30 29 rspcv CVAzVAxVAxExzEAxxzxVAxExCEAxxC
31 10 22 30 sylsyld AVCVACaVzVaxVaxExzEaxxzxVAxExCEAxxC
32 1 2 2pthfrgrrn GFriendGraphuVvVuyVuyEyvE
33 necom AxxA
34 eldifsn xVAxVxA
35 34 simplbi2com xAxVxVA
36 33 35 sylbi AxxVxVA
37 36 adantr AxAVxVxVA
38 37 imp AxAVxVxVA
39 sneq u=Au=A
40 39 difeq2d u=AVu=VA
41 preq1 u=Auy=Ay
42 41 eleq1d u=AuyEAyE
43 42 anbi1d u=AuyEyvEAyEyvE
44 43 rexbidv u=AyVuyEyvEyVAyEyvE
45 40 44 raleqbidv u=AvVuyVuyEyvEvVAyVAyEyvE
46 45 rspcv AVuVvVuyVuyEyvEvVAyVAyEyvE
47 46 adantl AxAVuVvVuyVuyEyvEvVAyVAyEyvE
48 47 adantr AxAVxVuVvVuyVuyEyvEvVAyVAyEyvE
49 preq2 v=xyv=yx
50 49 eleq1d v=xyvEyxE
51 50 anbi2d v=xAyEyvEAyEyxE
52 51 rexbidv v=xyVAyEyvEyVAyEyxE
53 52 rspcv xVAvVAyVAyEyvEyVAyEyxE
54 38 48 53 sylsyld AxAVxVuVvVuyVuyEyvEyVAyEyxE
55 prcom Ay=yA
56 55 eleq1i AyEyAE
57 prcom yx=xy
58 57 eleq1i yxExyE
59 56 58 anbi12ci AyEyxExyEyAE
60 preq2 b=xAb=Ax
61 60 eleq1d b=xAbEAxE
62 preq1 b=xbc=xc
63 62 eleq1d b=xbcExcE
64 biidd b=xcAEcAE
65 61 63 64 3anbi123d b=xAbEbcEcAEAxExcEcAE
66 biidd c=yAxEAxE
67 preq2 c=yxc=xy
68 67 eleq1d c=yxcExyE
69 preq1 c=ycA=yA
70 69 eleq1d c=ycAEyAE
71 66 68 70 3anbi123d c=yAxExcEcAEAxExyEyAE
72 65 71 rspc2ev xVyVAxExyEyAEbVcVAbEbcEcAE
73 72 3expa xVyVAxExyEyAEbVcVAbEbcEcAE
74 73 expcom AxExyEyAExVyVbVcVAbEbcEcAE
75 74 3expib AxExyEyAExVyVbVcVAbEbcEcAE
76 59 75 biimtrid AxEAyEyxExVyVbVcVAbEbcEcAE
77 76 adantr AxExCEAyEyxExVyVbVcVAbEbcEcAE
78 77 com13 xVyVAyEyxEAxExCEbVcVAbEbcEcAE
79 78 rexlimdva xVyVAyEyxEAxExCEbVcVAbEbcEcAE
80 79 com13 AxExCEyVAyEyxExVbVcVAbEbcEcAE
81 54 80 syl9 AxAVxVAxExCEuVvVuyVuyEyvExVbVcVAbEbcEcAE
82 81 exp31 AxAVxVAxExCEuVvVuyVuyEyvExVbVcVAbEbcEcAE
83 82 com24 AxAxExCExVAVuVvVuyVuyEyvExVbVcVAbEbcEcAE
84 83 adantr AxxCAxExCExVAVuVvVuyVuyEyvExVbVcVAbEbcEcAE
85 84 impcom AxExCEAxxCxVAVuVvVuyVuyEyvExVbVcVAbEbcEcAE
86 85 com15 xVxVAVuVvVuyVuyEyvEAxExCEAxxCbVcVAbEbcEcAE
87 86 pm2.43i xVAVuVvVuyVuyEyvEAxExCEAxxCbVcVAbEbcEcAE
88 87 com12 AVxVuVvVuyVuyEyvEAxExCEAxxCbVcVAbEbcEcAE
89 88 ad2antrr AVCVACxVuVvVuyVuyEyvEAxExCEAxxCbVcVAbEbcEcAE
90 89 com4t uVvVuyVuyEyvEAxExCEAxxCAVCVACxVbVcVAbEbcEcAE
91 32 90 syl GFriendGraphAxExCEAxxCAVCVACxVbVcVAbEbcEcAE
92 91 com14 xVAxExCEAxxCAVCVACGFriendGraphbVcVAbEbcEcAE
93 92 rexlimiv xVAxExCEAxxCAVCVACGFriendGraphbVcVAbEbcEcAE
94 31 93 syl6 AVCVACaVzVaxVaxExzEaxxzAVCVACGFriendGraphbVcVAbEbcEcAE
95 94 pm2.43a AVCVACaVzVaxVaxExzEaxxzGFriendGraphbVcVAbEbcEcAE
96 95 ex AVCVACaVzVaxVaxExzEaxxzGFriendGraphbVcVAbEbcEcAE
97 96 com4t aVzVaxVaxExzEaxxzGFriendGraphAVCVACbVcVAbEbcEcAE
98 3 97 mpcom GFriendGraphAVCVACbVcVAbEbcEcAE
99 98 3imp GFriendGraphAVCVACbVcVAbEbcEcAE