Metamath Proof Explorer


Theorem 3vfriswmgrlem

Description: Lemma for 3vfriswmgr . (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V=VtxG
3vfriswmgr.e E=EdgG
Assertion 3vfriswmgrlem AXBYABV=ABCGUSGraphABE∃!wABAwE

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V=VtxG
2 3vfriswmgr.e E=EdgG
3 animorr AXBYABV=ABCGUSGraphABEAAEABE
4 preq2 w=AAw=AA
5 4 eleq1d w=AAwEAAE
6 preq2 w=BAw=AB
7 6 eleq1d w=BAwEABE
8 5 7 rexprg AXBYwABAwEAAEABE
9 8 3adant3 AXBYABwABAwEAAEABE
10 9 ad2antrr AXBYABV=ABCGUSGraphABEwABAwEAAEABE
11 3 10 mpbird AXBYABV=ABCGUSGraphABEwABAwE
12 df-rex wABAwEwwABAwE
13 11 12 sylib AXBYABV=ABCGUSGraphABEwwABAwE
14 vex wV
15 14 elpr wABw=Aw=B
16 vex yV
17 16 elpr yABy=Ay=B
18 eqidd AXBYABV=ABCGUSGraphABEA=A
19 18 a1i AAEAXBYABV=ABCGUSGraphABEA=A
20 19 a1i13 y=AAAEAAEAXBYABV=ABCGUSGraphABEA=A
21 preq2 y=AAy=AA
22 21 eleq1d y=AAyEAAE
23 eqeq2 y=AA=yA=A
24 23 imbi2d y=AAXBYABV=ABCGUSGraphABEA=yAXBYABV=ABCGUSGraphABEA=A
25 24 imbi2d y=AAAEAXBYABV=ABCGUSGraphABEA=yAAEAXBYABV=ABCGUSGraphABEA=A
26 20 22 25 3imtr4d y=AAyEAAEAXBYABV=ABCGUSGraphABEA=y
27 2 usgredgne GUSGraphAAEAA
28 27 adantll V=ABCGUSGraphAAEAA
29 df-ne AA¬A=A
30 eqid A=A
31 30 pm2.24i ¬A=AA=B
32 29 31 sylbi AAA=B
33 28 32 syl V=ABCGUSGraphAAEA=B
34 33 ex V=ABCGUSGraphAAEA=B
35 34 ad2antlr AXBYABV=ABCGUSGraphABEAAEA=B
36 35 com12 AAEAXBYABV=ABCGUSGraphABEA=B
37 36 2a1i y=BABEAAEAXBYABV=ABCGUSGraphABEA=B
38 preq2 y=BAy=AB
39 38 eleq1d y=BAyEABE
40 eqeq2 y=BA=yA=B
41 40 imbi2d y=BAXBYABV=ABCGUSGraphABEA=yAXBYABV=ABCGUSGraphABEA=B
42 41 imbi2d y=BAAEAXBYABV=ABCGUSGraphABEA=yAAEAXBYABV=ABCGUSGraphABEA=B
43 37 39 42 3imtr4d y=BAyEAAEAXBYABV=ABCGUSGraphABEA=y
44 26 43 jaoi y=Ay=BAyEAAEAXBYABV=ABCGUSGraphABEA=y
45 eqeq1 w=Aw=yA=y
46 45 imbi2d w=AAXBYABV=ABCGUSGraphABEw=yAXBYABV=ABCGUSGraphABEA=y
47 5 46 imbi12d w=AAwEAXBYABV=ABCGUSGraphABEw=yAAEAXBYABV=ABCGUSGraphABEA=y
48 47 imbi2d w=AAyEAwEAXBYABV=ABCGUSGraphABEw=yAyEAAEAXBYABV=ABCGUSGraphABEA=y
49 44 48 imbitrrid w=Ay=Ay=BAyEAwEAXBYABV=ABCGUSGraphABEw=y
50 30 pm2.24i ¬A=AB=A
51 29 50 sylbi AAB=A
52 28 51 syl V=ABCGUSGraphAAEB=A
53 52 ex V=ABCGUSGraphAAEB=A
54 53 ad2antlr AXBYABV=ABCGUSGraphABEAAEB=A
55 54 com12 AAEAXBYABV=ABCGUSGraphABEB=A
56 55 a1i13 y=AAAEABEAXBYABV=ABCGUSGraphABEB=A
57 eqeq2 y=AB=yB=A
58 57 imbi2d y=AAXBYABV=ABCGUSGraphABEB=yAXBYABV=ABCGUSGraphABEB=A
59 58 imbi2d y=AABEAXBYABV=ABCGUSGraphABEB=yABEAXBYABV=ABCGUSGraphABEB=A
60 56 22 59 3imtr4d y=AAyEABEAXBYABV=ABCGUSGraphABEB=y
61 eqidd AXBYABV=ABCGUSGraphABEB=B
62 61 a1i ABEAXBYABV=ABCGUSGraphABEB=B
63 62 a1i13 y=BABEABEAXBYABV=ABCGUSGraphABEB=B
64 eqeq2 y=BB=yB=B
65 64 imbi2d y=BAXBYABV=ABCGUSGraphABEB=yAXBYABV=ABCGUSGraphABEB=B
66 65 imbi2d y=BABEAXBYABV=ABCGUSGraphABEB=yABEAXBYABV=ABCGUSGraphABEB=B
67 63 39 66 3imtr4d y=BAyEABEAXBYABV=ABCGUSGraphABEB=y
68 60 67 jaoi y=Ay=BAyEABEAXBYABV=ABCGUSGraphABEB=y
69 eqeq1 w=Bw=yB=y
70 69 imbi2d w=BAXBYABV=ABCGUSGraphABEw=yAXBYABV=ABCGUSGraphABEB=y
71 7 70 imbi12d w=BAwEAXBYABV=ABCGUSGraphABEw=yABEAXBYABV=ABCGUSGraphABEB=y
72 71 imbi2d w=BAyEAwEAXBYABV=ABCGUSGraphABEw=yAyEABEAXBYABV=ABCGUSGraphABEB=y
73 68 72 imbitrrid w=By=Ay=BAyEAwEAXBYABV=ABCGUSGraphABEw=y
74 49 73 jaoi w=Aw=By=Ay=BAyEAwEAXBYABV=ABCGUSGraphABEw=y
75 74 com3l y=Ay=BAyEw=Aw=BAwEAXBYABV=ABCGUSGraphABEw=y
76 17 75 sylbi yABAyEw=Aw=BAwEAXBYABV=ABCGUSGraphABEw=y
77 76 imp yABAyEw=Aw=BAwEAXBYABV=ABCGUSGraphABEw=y
78 77 com3l w=Aw=BAwEyABAyEAXBYABV=ABCGUSGraphABEw=y
79 15 78 sylbi wABAwEyABAyEAXBYABV=ABCGUSGraphABEw=y
80 79 imp31 wABAwEyABAyEAXBYABV=ABCGUSGraphABEw=y
81 80 com12 AXBYABV=ABCGUSGraphABEwABAwEyABAyEw=y
82 81 alrimivv AXBYABV=ABCGUSGraphABEwywABAwEyABAyEw=y
83 eleq1w w=ywAByAB
84 preq2 w=yAw=Ay
85 84 eleq1d w=yAwEAyE
86 83 85 anbi12d w=ywABAwEyABAyE
87 86 eu4 ∃!wwABAwEwwABAwEwywABAwEyABAyEw=y
88 13 82 87 sylanbrc AXBYABV=ABCGUSGraphABE∃!wwABAwE
89 df-reu ∃!wABAwE∃!wwABAwE
90 88 89 sylibr AXBYABV=ABCGUSGraphABE∃!wABAwE
91 90 ex AXBYABV=ABCGUSGraphABE∃!wABAwE