Metamath Proof Explorer


Theorem 4rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution, four variables. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses rexfrabdioph.1 M=N+1
rexfrabdioph.2 L=M+1
rexfrabdioph.3 K=L+1
rexfrabdioph.4 J=K+1
Assertion 4rexfrabdioph N0t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJu01N|v0w0x0y0φDiophN

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 M=N+1
2 rexfrabdioph.2 L=M+1
3 rexfrabdioph.3 K=L+1
4 rexfrabdioph.4 J=K+1
5 2sbcrex [˙aM/v]˙[˙aL/w]˙x0y0φx0[˙aM/v]˙[˙aL/w]˙y0φ
6 2sbcrex [˙aM/v]˙[˙aL/w]˙y0φy0[˙aM/v]˙[˙aL/w]˙φ
7 6 rexbii x0[˙aM/v]˙[˙aL/w]˙y0φx0y0[˙aM/v]˙[˙aL/w]˙φ
8 5 7 bitri [˙aM/v]˙[˙aL/w]˙x0y0φx0y0[˙aM/v]˙[˙aL/w]˙φ
9 8 sbcbii [˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙x0y0φ[˙a1N/u]˙x0y0[˙aM/v]˙[˙aL/w]˙φ
10 sbc2rex [˙a1N/u]˙x0y0[˙aM/v]˙[˙aL/w]˙φx0y0[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ
11 9 10 bitri [˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙x0y0φx0y0[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ
12 11 rabbii a01L|[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙x0y0φ=a01L|x0y0[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ
13 nn0p1nn N0N+1
14 1 13 eqeltrid N0M
15 14 peano2nnd N0M+1
16 2 15 eqeltrid N0L
17 16 nnnn0d N0L0
18 17 adantr N0t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJL0
19 sbcrot3 [˙a1N/u]˙[˙tK/x]˙[˙tJ/y]˙[˙aM/v]˙[˙aL/w]˙φ[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ
20 sbcrot3 [˙tJ/y]˙[˙aM/v]˙[˙aL/w]˙φ[˙aM/v]˙[˙aL/w]˙[˙tJ/y]˙φ
21 20 sbcbii [˙tK/x]˙[˙tJ/y]˙[˙aM/v]˙[˙aL/w]˙φ[˙tK/x]˙[˙aM/v]˙[˙aL/w]˙[˙tJ/y]˙φ
22 sbcrot3 [˙tK/x]˙[˙aM/v]˙[˙aL/w]˙[˙tJ/y]˙φ[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
23 21 22 bitri [˙tK/x]˙[˙tJ/y]˙[˙aM/v]˙[˙aL/w]˙φ[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
24 23 sbcbii [˙a1N/u]˙[˙tK/x]˙[˙tJ/y]˙[˙aM/v]˙[˙aL/w]˙φ[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
25 19 24 bitr3i [˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
26 25 sbcbii [˙t1L/a]˙[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ[˙t1L/a]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
27 reseq1 a=t1La1N=t1L1N
28 27 sbccomieg [˙t1L/a]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1L1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
29 fzssp1 1N1N+1
30 1 oveq2i 1M=1N+1
31 29 30 sseqtrri 1N1M
32 fzssp1 1M1M+1
33 2 oveq2i 1L=1M+1
34 32 33 sseqtrri 1M1L
35 31 34 sstri 1N1L
36 resabs1 1N1Lt1L1N=t1N
37 dfsbcq t1L1N=t1N[˙t1L1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
38 35 36 37 mp2b [˙t1L1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
39 fveq1 a=t1LaM=t1LM
40 39 sbccomieg [˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1LM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
41 elfz1end MM1M
42 14 41 sylib N0M1M
43 34 42 sselid N0M1L
44 fvres M1Lt1LM=tM
45 dfsbcq t1LM=tM[˙t1LM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
46 43 44 45 3syl N0[˙t1LM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
47 vex tV
48 47 resex t1LV
49 fveq1 a=t1LaL=t1LL
50 49 sbcco3gw t1LV[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1LL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
51 48 50 ax-mp [˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1LL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
52 elfz1end LL1L
53 16 52 sylib N0L1L
54 fvres L1Lt1LL=tL
55 dfsbcq t1LL=tL[˙t1LL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
56 53 54 55 3syl N0[˙t1LL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
57 51 56 bitrid N0[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
58 57 sbcbidv N0[˙tM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
59 46 58 bitrd N0[˙t1LM/v]˙[˙t1L/a]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
60 40 59 bitrid N0[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
61 60 sbcbidv N0[˙t1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
62 38 61 bitrid N0[˙t1L1N/u]˙[˙t1L/a]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
63 28 62 bitrid N0[˙t1L/a]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙[˙tK/x]˙[˙tJ/y]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
64 26 63 bitrid N0[˙t1L/a]˙[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
65 64 rabbidv N0t01J|[˙t1L/a]˙[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φ=t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φ
66 65 eleq1d N0t01J|[˙t1L/a]˙[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φDiophJt01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJ
67 66 biimpar N0t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJt01J|[˙t1L/a]˙[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φDiophJ
68 3 4 2rexfrabdioph L0t01J|[˙t1L/a]˙[˙tK/x]˙[˙tJ/y]˙[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φDiophJa01L|x0y0[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φDiophL
69 18 67 68 syl2anc N0t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJa01L|x0y0[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙φDiophL
70 12 69 eqeltrid N0t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJa01L|[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙x0y0φDiophL
71 1 2 2rexfrabdioph N0a01L|[˙a1N/u]˙[˙aM/v]˙[˙aL/w]˙x0y0φDiophLu01N|v0w0x0y0φDiophN
72 70 71 syldan N0t01J|[˙t1N/u]˙[˙tM/v]˙[˙tL/w]˙[˙tK/x]˙[˙tJ/y]˙φDiophJu01N|v0w0x0y0φDiophN