| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexfrabdioph.1 |
|
| 2 |
|
rexfrabdioph.2 |
|
| 3 |
|
rexfrabdioph.3 |
|
| 4 |
|
rexfrabdioph.4 |
|
| 5 |
|
2sbcrex |
|
| 6 |
|
2sbcrex |
|
| 7 |
6
|
rexbii |
|
| 8 |
5 7
|
bitri |
|
| 9 |
8
|
sbcbii |
|
| 10 |
|
sbc2rex |
|
| 11 |
9 10
|
bitri |
|
| 12 |
11
|
rabbii |
|
| 13 |
|
nn0p1nn |
|
| 14 |
1 13
|
eqeltrid |
|
| 15 |
14
|
peano2nnd |
|
| 16 |
2 15
|
eqeltrid |
|
| 17 |
16
|
nnnn0d |
|
| 18 |
17
|
adantr |
|
| 19 |
|
sbcrot3 |
|
| 20 |
|
sbcrot3 |
|
| 21 |
20
|
sbcbii |
|
| 22 |
|
sbcrot3 |
|
| 23 |
21 22
|
bitri |
|
| 24 |
23
|
sbcbii |
|
| 25 |
19 24
|
bitr3i |
|
| 26 |
25
|
sbcbii |
|
| 27 |
|
reseq1 |
|
| 28 |
27
|
sbccomieg |
|
| 29 |
|
fzssp1 |
|
| 30 |
1
|
oveq2i |
|
| 31 |
29 30
|
sseqtrri |
|
| 32 |
|
fzssp1 |
|
| 33 |
2
|
oveq2i |
|
| 34 |
32 33
|
sseqtrri |
|
| 35 |
31 34
|
sstri |
|
| 36 |
|
resabs1 |
|
| 37 |
|
dfsbcq |
|
| 38 |
35 36 37
|
mp2b |
|
| 39 |
|
fveq1 |
|
| 40 |
39
|
sbccomieg |
|
| 41 |
|
elfz1end |
|
| 42 |
14 41
|
sylib |
|
| 43 |
34 42
|
sselid |
|
| 44 |
|
fvres |
|
| 45 |
|
dfsbcq |
|
| 46 |
43 44 45
|
3syl |
|
| 47 |
|
vex |
|
| 48 |
47
|
resex |
|
| 49 |
|
fveq1 |
|
| 50 |
49
|
sbcco3gw |
|
| 51 |
48 50
|
ax-mp |
|
| 52 |
|
elfz1end |
|
| 53 |
16 52
|
sylib |
|
| 54 |
|
fvres |
|
| 55 |
|
dfsbcq |
|
| 56 |
53 54 55
|
3syl |
|
| 57 |
51 56
|
bitrid |
|
| 58 |
57
|
sbcbidv |
|
| 59 |
46 58
|
bitrd |
|
| 60 |
40 59
|
bitrid |
|
| 61 |
60
|
sbcbidv |
|
| 62 |
38 61
|
bitrid |
|
| 63 |
28 62
|
bitrid |
|
| 64 |
26 63
|
bitrid |
|
| 65 |
64
|
rabbidv |
|
| 66 |
65
|
eleq1d |
|
| 67 |
66
|
biimpar |
|
| 68 |
3 4
|
2rexfrabdioph |
|
| 69 |
18 67 68
|
syl2anc |
|
| 70 |
12 69
|
eqeltrid |
|
| 71 |
1 2
|
2rexfrabdioph |
|
| 72 |
70 71
|
syldan |
|