Metamath Proof Explorer


Theorem 5oalem3

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem3.1 AS
5oalem3.2 BS
5oalem3.3 CS
5oalem3.4 DS
5oalem3.5 FS
5oalem3.6 GS
Assertion 5oalem3 xAyBzCwDfFgGx+y=f+gz+w=f+gx-zA+FB+G+C+FD+G

Proof

Step Hyp Ref Expression
1 5oalem3.1 AS
2 5oalem3.2 BS
3 5oalem3.3 CS
4 5oalem3.4 DS
5 5oalem3.5 FS
6 5oalem3.6 GS
7 anandir xAyBzCwDfFgGxAyBfFgGzCwDfFgG
8 1 2 5 6 5oalem2 xAyBfFgGx+y=f+gx-fA+FB+G
9 3 4 5 6 5oalem2 zCwDfFgGz+w=f+gz-fC+FD+G
10 8 9 anim12i xAyBfFgGx+y=f+gzCwDfFgGz+w=f+gx-fA+FB+Gz-fC+FD+G
11 10 an4s xAyBfFgGzCwDfFgGx+y=f+gz+w=f+gx-fA+FB+Gz-fC+FD+G
12 7 11 sylanb xAyBzCwDfFgGx+y=f+gz+w=f+gx-fA+FB+Gz-fC+FD+G
13 1 5 shscli A+FS
14 2 6 shscli B+GS
15 13 14 shincli A+FB+GS
16 3 5 shscli C+FS
17 4 6 shscli D+GS
18 16 17 shincli C+FD+GS
19 15 18 shsvsi x-fA+FB+Gz-fC+FD+Gx-f-z-fA+FB+G+C+FD+G
20 12 19 syl xAyBzCwDfFgGx+y=f+gz+w=f+gx-f-z-fA+FB+G+C+FD+G
21 1 sheli xAx
22 21 adantr xAyBx
23 3 sheli zCz
24 23 adantr zCwDz
25 22 24 anim12i xAyBzCwDxz
26 5 sheli fFf
27 26 adantr fFgGf
28 hvsubsub4 xfzfx-f-z-f=x-z-f-f
29 28 anandirs xzfx-f-z-f=x-z-f-f
30 hvsubid ff-f=0
31 30 oveq2d fx-z-f-f=x-z-0
32 hvsubcl xzx-z
33 hvsub0 x-zx-z-0=x-z
34 32 33 syl xzx-z-0=x-z
35 31 34 sylan9eqr xzfx-z-f-f=x-z
36 29 35 eqtrd xzfx-f-z-f=x-z
37 25 27 36 syl2an xAyBzCwDfFgGx-f-z-f=x-z
38 37 eleq1d xAyBzCwDfFgGx-f-z-fA+FB+G+C+FD+Gx-zA+FB+G+C+FD+G
39 38 adantr xAyBzCwDfFgGx+y=f+gz+w=f+gx-f-z-fA+FB+G+C+FD+Gx-zA+FB+G+C+FD+G
40 20 39 mpbid xAyBzCwDfFgGx+y=f+gz+w=f+gx-zA+FB+G+C+FD+G