Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 5oalem3.1 | |
|
5oalem3.2 | |
||
5oalem3.3 | |
||
5oalem3.4 | |
||
5oalem3.5 | |
||
5oalem3.6 | |
||
Assertion | 5oalem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5oalem3.1 | |
|
2 | 5oalem3.2 | |
|
3 | 5oalem3.3 | |
|
4 | 5oalem3.4 | |
|
5 | 5oalem3.5 | |
|
6 | 5oalem3.6 | |
|
7 | anandir | |
|
8 | 1 2 5 6 | 5oalem2 | |
9 | 3 4 5 6 | 5oalem2 | |
10 | 8 9 | anim12i | |
11 | 10 | an4s | |
12 | 7 11 | sylanb | |
13 | 1 5 | shscli | |
14 | 2 6 | shscli | |
15 | 13 14 | shincli | |
16 | 3 5 | shscli | |
17 | 4 6 | shscli | |
18 | 16 17 | shincli | |
19 | 15 18 | shsvsi | |
20 | 12 19 | syl | |
21 | 1 | sheli | |
22 | 21 | adantr | |
23 | 3 | sheli | |
24 | 23 | adantr | |
25 | 22 24 | anim12i | |
26 | 5 | sheli | |
27 | 26 | adantr | |
28 | hvsubsub4 | |
|
29 | 28 | anandirs | |
30 | hvsubid | |
|
31 | 30 | oveq2d | |
32 | hvsubcl | |
|
33 | hvsub0 | |
|
34 | 32 33 | syl | |
35 | 31 34 | sylan9eqr | |
36 | 29 35 | eqtrd | |
37 | 25 27 36 | syl2an | |
38 | 37 | eleq1d | |
39 | 38 | adantr | |
40 | 20 39 | mpbid | |