Metamath Proof Explorer


Theorem aannenlem3

Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aannenlem.a H=a0b|cdPoly|d0𝑝degdae0coeffdeacb=0
Assertion aannenlem3 𝔸

Proof

Step Hyp Ref Expression
1 aannenlem.a H=a0b|cdPoly|d0𝑝degdae0coeffdeacb=0
2 1 aannenlem2 𝔸=ranH
3 omelon ωOn
4 nn0ennn 0
5 nnenom ω
6 4 5 entri 0ω
7 6 ensymi ω0
8 isnumi ωOnω00domcard
9 3 7 8 mp2an 0domcard
10 cnex V
11 10 rabex b|cdPoly|d0𝑝degdae0coeffdeacb=0V
12 11 1 fnmpti HFn0
13 dffn4 HFn0H:0ontoranH
14 12 13 mpbi H:0ontoranH
15 fodomnum 0domcardH:0ontoranHranH0
16 9 14 15 mp2 ranH0
17 domentr ranH00ωranHω
18 16 6 17 mp2an ranHω
19 fvelrnb HFn0franHg0Hg=f
20 12 19 ax-mp franHg0Hg=f
21 1 aannenlem1 g0HgFin
22 eleq1 Hg=fHgFinfFin
23 21 22 syl5ibcom g0Hg=ffFin
24 23 rexlimiv g0Hg=ffFin
25 20 24 sylbi franHfFin
26 25 ssriv ranHFin
27 aasscn 𝔸
28 2 27 eqsstrri ranH
29 soss ranHfOrfOrranH
30 28 29 ax-mp fOrfOrranH
31 iunfictbso ranHωranHFinfOrranHranHω
32 18 26 30 31 mp3an12i fOrranHω
33 2 32 eqbrtrid fOr𝔸ω
34 cnso ffOr
35 33 34 exlimiiv 𝔸ω
36 5 ensymi ω
37 domentr 𝔸ωω𝔸
38 35 36 37 mp2an 𝔸
39 10 27 ssexi 𝔸V
40 nnssq
41 qssaa 𝔸
42 40 41 sstri 𝔸
43 ssdomg 𝔸V𝔸𝔸
44 39 42 43 mp2 𝔸
45 sbth 𝔸𝔸𝔸
46 38 44 45 mp2an 𝔸