Description: Abel's theorem, restricted to the [ 0 , 1 ] interval. (Contributed by Mario Carneiro, 2-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abelth2.1 | |
|
abelth2.2 | |
||
abelth2.3 | |
||
Assertion | abelth2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abelth2.1 | |
|
2 | abelth2.2 | |
|
3 | abelth2.3 | |
|
4 | unitssre | |
|
5 | ax-resscn | |
|
6 | 4 5 | sstri | |
7 | 6 | a1i | |
8 | 1re | |
|
9 | simpr | |
|
10 | elicc01 | |
|
11 | 9 10 | sylib | |
12 | 11 | simp1d | |
13 | resubcl | |
|
14 | 8 12 13 | sylancr | |
15 | 14 | leidd | |
16 | 1red | |
|
17 | 11 | simp3d | |
18 | 12 16 17 | abssubge0d | |
19 | 11 | simp2d | |
20 | 12 19 | absidd | |
21 | 20 | oveq2d | |
22 | 21 | oveq2d | |
23 | 14 | recnd | |
24 | 23 | mullidd | |
25 | 22 24 | eqtrd | |
26 | 15 18 25 | 3brtr4d | |
27 | 7 26 | ssrabdv | |
28 | 27 | resmptd | |
29 | 28 3 | eqtr4di | |
30 | 1red | |
|
31 | 0le1 | |
|
32 | 31 | a1i | |
33 | eqid | |
|
34 | eqid | |
|
35 | 1 2 30 32 33 34 | abelth | |
36 | rescncf | |
|
37 | 27 35 36 | sylc | |
38 | 29 37 | eqeltrrd | |