| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abelth2.1 |
|
| 2 |
|
abelth2.2 |
|
| 3 |
|
abelth2.3 |
|
| 4 |
|
unitssre |
|
| 5 |
|
ax-resscn |
|
| 6 |
4 5
|
sstri |
|
| 7 |
6
|
a1i |
|
| 8 |
|
1re |
|
| 9 |
|
simpr |
|
| 10 |
|
elicc01 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
11
|
simp1d |
|
| 13 |
|
resubcl |
|
| 14 |
8 12 13
|
sylancr |
|
| 15 |
14
|
leidd |
|
| 16 |
|
1red |
|
| 17 |
11
|
simp3d |
|
| 18 |
12 16 17
|
abssubge0d |
|
| 19 |
11
|
simp2d |
|
| 20 |
12 19
|
absidd |
|
| 21 |
20
|
oveq2d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
14
|
recnd |
|
| 24 |
23
|
mullidd |
|
| 25 |
22 24
|
eqtrd |
|
| 26 |
15 18 25
|
3brtr4d |
|
| 27 |
7 26
|
ssrabdv |
|
| 28 |
27
|
resmptd |
|
| 29 |
28 3
|
eqtr4di |
|
| 30 |
|
1red |
|
| 31 |
|
0le1 |
|
| 32 |
31
|
a1i |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
1 2 30 32 33 34
|
abelth |
|
| 36 |
|
rescncf |
|
| 37 |
27 35 36
|
sylc |
|
| 38 |
29 37
|
eqeltrrd |
|