Metamath Proof Explorer


Theorem abelth2

Description: Abel's theorem, restricted to the [ 0 , 1 ] interval. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Hypotheses abelth2.1 φA:0
abelth2.2 φseq0+Adom
abelth2.3 F=x01n0Anxn
Assertion abelth2 φF:01cn

Proof

Step Hyp Ref Expression
1 abelth2.1 φA:0
2 abelth2.2 φseq0+Adom
3 abelth2.3 F=x01n0Anxn
4 unitssre 01
5 ax-resscn
6 4 5 sstri 01
7 6 a1i φ01
8 1re 1
9 simpr φz01z01
10 elicc01 z01z0zz1
11 9 10 sylib φz01z0zz1
12 11 simp1d φz01z
13 resubcl 1z1z
14 8 12 13 sylancr φz011z
15 14 leidd φz011z1z
16 1red φz011
17 11 simp3d φz01z1
18 12 16 17 abssubge0d φz011z=1z
19 11 simp2d φz010z
20 12 19 absidd φz01z=z
21 20 oveq2d φz011z=1z
22 21 oveq2d φz0111z=11z
23 14 recnd φz011z
24 23 mullidd φz0111z=1z
25 22 24 eqtrd φz0111z=1z
26 15 18 25 3brtr4d φz011z11z
27 7 26 ssrabdv φ01z|1z11z
28 27 resmptd φxz|1z11zn0Anxn01=x01n0Anxn
29 28 3 eqtr4di φxz|1z11zn0Anxn01=F
30 1red φ1
31 0le1 01
32 31 a1i φ01
33 eqid z|1z11z=z|1z11z
34 eqid xz|1z11zn0Anxn=xz|1z11zn0Anxn
35 1 2 30 32 33 34 abelth φxz|1z11zn0Anxn:z|1z11zcn
36 rescncf 01z|1z11zxz|1z11zn0Anxn:z|1z11zcnxz|1z11zn0Anxn01:01cn
37 27 35 36 sylc φxz|1z11zn0Anxn01:01cn
38 29 37 eqeltrrd φF:01cn