Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpgprmd.1 | |
|
ablsimpgprmd.2 | |
||
ablsimpgprmd.3 | |
||
Assertion | ablsimpgprmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpgprmd.1 | |
|
2 | ablsimpgprmd.2 | |
|
3 | ablsimpgprmd.3 | |
|
4 | simpr | |
|
5 | 3 | simpggrpd | |
6 | eqid | |
|
7 | 1 6 | grpidcl | |
8 | 5 7 | syl | |
9 | 8 | adantr | |
10 | 1 2 3 | ablsimpgfind | |
11 | 10 | adantr | |
12 | 4 9 11 | hash1elsn | |
13 | 3 | adantr | |
14 | 1 6 13 | simpgntrivd | |
15 | 12 14 | pm2.65da | |
16 | 1 5 10 | hashfingrpnn | |
17 | elnn1uz2 | |
|
18 | 16 17 | sylib | |
19 | 18 | ord | |
20 | 15 19 | mpd | |
21 | 2 3 | ablsimpgcygd | |
22 | 21 | 3ad2ant1 | |
23 | simp3 | |
|
24 | 10 | 3ad2ant1 | |
25 | simp2 | |
|
26 | 1 22 23 24 25 | fincygsubgodexd | |
27 | simpl1 | |
|
28 | 27 3 | syl | |
29 | simprl | |
|
30 | ablnsg | |
|
31 | 27 2 30 | 3syl | |
32 | 29 31 | eleqtrrd | |
33 | 1 6 28 32 | simpgnsgeqd | |
34 | simpr | |
|
35 | 34 | fveq2d | |
36 | simplrr | |
|
37 | 6 | fvexi | |
38 | hashsng | |
|
39 | 37 38 | mp1i | |
40 | 35 36 39 | 3eqtr3d | |
41 | 40 | ex | |
42 | simplrr | |
|
43 | simpr | |
|
44 | 43 | fveq2d | |
45 | 42 44 | eqtr3d | |
46 | 45 | ex | |
47 | 41 46 | orim12d | |
48 | 33 47 | mpd | |
49 | 26 48 | rexlimddv | |
50 | 49 | 3exp | |
51 | 50 | ralrimiv | |
52 | isprm2 | |
|
53 | 20 51 52 | sylanbrc | |