Metamath Proof Explorer


Theorem ablsimpgprmd

Description: An abelian simple group has prime order. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgprmd.1 B=BaseG
ablsimpgprmd.2 φGAbel
ablsimpgprmd.3 φGSimpGrp
Assertion ablsimpgprmd φB

Proof

Step Hyp Ref Expression
1 ablsimpgprmd.1 B=BaseG
2 ablsimpgprmd.2 φGAbel
3 ablsimpgprmd.3 φGSimpGrp
4 simpr φB=1B=1
5 3 simpggrpd φGGrp
6 eqid 0G=0G
7 1 6 grpidcl GGrp0GB
8 5 7 syl φ0GB
9 8 adantr φB=10GB
10 1 2 3 ablsimpgfind φBFin
11 10 adantr φB=1BFin
12 4 9 11 hash1elsn φB=1B=0G
13 3 adantr φB=1GSimpGrp
14 1 6 13 simpgntrivd φB=1¬B=0G
15 12 14 pm2.65da φ¬B=1
16 1 5 10 hashfingrpnn φB
17 elnn1uz2 BB=1B2
18 16 17 sylib φB=1B2
19 18 ord φ¬B=1B2
20 15 19 mpd φB2
21 2 3 ablsimpgcygd φGCycGrp
22 21 3ad2ant1 φyyBGCycGrp
23 simp3 φyyByB
24 10 3ad2ant1 φyyBBFin
25 simp2 φyyBy
26 1 22 23 24 25 fincygsubgodexd φyyBxSubGrpGx=y
27 simpl1 φyyBxSubGrpGx=yφ
28 27 3 syl φyyBxSubGrpGx=yGSimpGrp
29 simprl φyyBxSubGrpGx=yxSubGrpG
30 ablnsg GAbelNrmSGrpG=SubGrpG
31 27 2 30 3syl φyyBxSubGrpGx=yNrmSGrpG=SubGrpG
32 29 31 eleqtrrd φyyBxSubGrpGx=yxNrmSGrpG
33 1 6 28 32 simpgnsgeqd φyyBxSubGrpGx=yx=0Gx=B
34 simpr φyyBxSubGrpGx=yx=0Gx=0G
35 34 fveq2d φyyBxSubGrpGx=yx=0Gx=0G
36 simplrr φyyBxSubGrpGx=yx=0Gx=y
37 6 fvexi 0GV
38 hashsng 0GV0G=1
39 37 38 mp1i φyyBxSubGrpGx=yx=0G0G=1
40 35 36 39 3eqtr3d φyyBxSubGrpGx=yx=0Gy=1
41 40 ex φyyBxSubGrpGx=yx=0Gy=1
42 simplrr φyyBxSubGrpGx=yx=Bx=y
43 simpr φyyBxSubGrpGx=yx=Bx=B
44 43 fveq2d φyyBxSubGrpGx=yx=Bx=B
45 42 44 eqtr3d φyyBxSubGrpGx=yx=By=B
46 45 ex φyyBxSubGrpGx=yx=By=B
47 41 46 orim12d φyyBxSubGrpGx=yx=0Gx=By=1y=B
48 33 47 mpd φyyBxSubGrpGx=yy=1y=B
49 26 48 rexlimddv φyyBy=1y=B
50 49 3exp φyyBy=1y=B
51 50 ralrimiv φyyBy=1y=B
52 isprm2 BB2yyBy=1y=B
53 20 51 52 sylanbrc φB