Metamath Proof Explorer


Theorem ackbij1b

Description: The Ackermann bijection, part 1b: the bijection from ackbij1 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f F=x𝒫ωFincardyxy×𝒫y
Assertion ackbij1b AωF𝒫A=card𝒫A

Proof

Step Hyp Ref Expression
1 ackbij.f F=x𝒫ωFincardyxy×𝒫y
2 1 ackbij1lem17 F:𝒫ωFin1-1ω
3 ackbij2lem1 Aω𝒫A𝒫ωFin
4 pwexg Aω𝒫AV
5 f1imaeng F:𝒫ωFin1-1ω𝒫A𝒫ωFin𝒫AVF𝒫A𝒫A
6 2 3 4 5 mp3an2i AωF𝒫A𝒫A
7 nnfi AωAFin
8 pwfi AFin𝒫AFin
9 7 8 sylib Aω𝒫AFin
10 ficardid 𝒫AFincard𝒫A𝒫A
11 ensym card𝒫A𝒫A𝒫Acard𝒫A
12 9 10 11 3syl Aω𝒫Acard𝒫A
13 entr F𝒫A𝒫A𝒫Acard𝒫AF𝒫Acard𝒫A
14 6 12 13 syl2anc AωF𝒫Acard𝒫A
15 onfin2 ω=OnFin
16 inss2 OnFinFin
17 15 16 eqsstri ωFin
18 ficardom 𝒫AFincard𝒫Aω
19 9 18 syl Aωcard𝒫Aω
20 17 19 sselid Aωcard𝒫AFin
21 php3 card𝒫AFinF𝒫Acard𝒫AF𝒫Acard𝒫A
22 21 ex card𝒫AFinF𝒫Acard𝒫AF𝒫Acard𝒫A
23 20 22 syl AωF𝒫Acard𝒫AF𝒫Acard𝒫A
24 sdomnen F𝒫Acard𝒫A¬F𝒫Acard𝒫A
25 23 24 syl6 AωF𝒫Acard𝒫A¬F𝒫Acard𝒫A
26 14 25 mt2d Aω¬F𝒫Acard𝒫A
27 fvex FaV
28 ackbij1lem3 AωA𝒫ωFin
29 elpwi a𝒫AaA
30 1 ackbij1lem12 A𝒫ωFinaAFaFA
31 28 29 30 syl2an Aωa𝒫AFaFA
32 1 ackbij1lem10 F:𝒫ωFinω
33 peano1 ω
34 32 33 f0cli Faω
35 nnord FaωOrdFa
36 34 35 ax-mp OrdFa
37 32 33 f0cli FAω
38 nnord FAωOrdFA
39 37 38 ax-mp OrdFA
40 ordsucsssuc OrdFaOrdFAFaFAsucFasucFA
41 36 39 40 mp2an FaFAsucFasucFA
42 31 41 sylib Aωa𝒫AsucFasucFA
43 1 ackbij1lem14 AωFA=sucFA
44 1 ackbij1lem8 AωFA=card𝒫A
45 43 44 eqtr3d AωsucFA=card𝒫A
46 45 adantr Aωa𝒫AsucFA=card𝒫A
47 42 46 sseqtrd Aωa𝒫AsucFacard𝒫A
48 sucssel FaVsucFacard𝒫AFacard𝒫A
49 27 47 48 mpsyl Aωa𝒫AFacard𝒫A
50 49 ralrimiva Aωa𝒫AFacard𝒫A
51 f1fun F:𝒫ωFin1-1ωFunF
52 2 51 ax-mp FunF
53 f1dm F:𝒫ωFin1-1ωdomF=𝒫ωFin
54 2 53 ax-mp domF=𝒫ωFin
55 3 54 sseqtrrdi Aω𝒫AdomF
56 funimass4 FunF𝒫AdomFF𝒫Acard𝒫Aa𝒫AFacard𝒫A
57 52 55 56 sylancr AωF𝒫Acard𝒫Aa𝒫AFacard𝒫A
58 50 57 mpbird AωF𝒫Acard𝒫A
59 sspss F𝒫Acard𝒫AF𝒫Acard𝒫AF𝒫A=card𝒫A
60 58 59 sylib AωF𝒫Acard𝒫AF𝒫A=card𝒫A
61 orel1 ¬F𝒫Acard𝒫AF𝒫Acard𝒫AF𝒫A=card𝒫AF𝒫A=card𝒫A
62 26 60 61 sylc AωF𝒫A=card𝒫A