Description: The Ackermann bijection, part 1b: the bijection from ackbij1 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ackbij.f | |
|
Assertion | ackbij1b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackbij.f | |
|
2 | 1 | ackbij1lem17 | |
3 | ackbij2lem1 | |
|
4 | pwexg | |
|
5 | f1imaeng | |
|
6 | 2 3 4 5 | mp3an2i | |
7 | nnfi | |
|
8 | pwfi | |
|
9 | 7 8 | sylib | |
10 | ficardid | |
|
11 | ensym | |
|
12 | 9 10 11 | 3syl | |
13 | entr | |
|
14 | 6 12 13 | syl2anc | |
15 | onfin2 | |
|
16 | inss2 | |
|
17 | 15 16 | eqsstri | |
18 | ficardom | |
|
19 | 9 18 | syl | |
20 | 17 19 | sselid | |
21 | php3 | |
|
22 | 21 | ex | |
23 | 20 22 | syl | |
24 | sdomnen | |
|
25 | 23 24 | syl6 | |
26 | 14 25 | mt2d | |
27 | fvex | |
|
28 | ackbij1lem3 | |
|
29 | elpwi | |
|
30 | 1 | ackbij1lem12 | |
31 | 28 29 30 | syl2an | |
32 | 1 | ackbij1lem10 | |
33 | peano1 | |
|
34 | 32 33 | f0cli | |
35 | nnord | |
|
36 | 34 35 | ax-mp | |
37 | 32 33 | f0cli | |
38 | nnord | |
|
39 | 37 38 | ax-mp | |
40 | ordsucsssuc | |
|
41 | 36 39 40 | mp2an | |
42 | 31 41 | sylib | |
43 | 1 | ackbij1lem14 | |
44 | 1 | ackbij1lem8 | |
45 | 43 44 | eqtr3d | |
46 | 45 | adantr | |
47 | 42 46 | sseqtrd | |
48 | sucssel | |
|
49 | 27 47 48 | mpsyl | |
50 | 49 | ralrimiva | |
51 | f1fun | |
|
52 | 2 51 | ax-mp | |
53 | f1dm | |
|
54 | 2 53 | ax-mp | |
55 | 3 54 | sseqtrrdi | |
56 | funimass4 | |
|
57 | 52 55 56 | sylancr | |
58 | 50 57 | mpbird | |
59 | sspss | |
|
60 | 58 59 | sylib | |
61 | orel1 | |
|
62 | 26 60 61 | sylc | |