Metamath Proof Explorer


Theorem ackbij1b

Description: The Ackermann bijection, part 1b: the bijection from ackbij1 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014)

Ref Expression
Hypothesis ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
Assertion ackbij1b ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ackbij.f 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ 𝑦𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) )
2 1 ackbij1lem17 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω
3 ackbij2lem1 ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) )
4 pwexg ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ V )
5 f1imaeng ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ∧ 𝒫 𝐴 ∈ V ) → ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 )
6 2 3 4 5 mp3an2i ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 )
7 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
8 pwfi ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin )
9 7 8 sylib ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin )
10 ficardid ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 )
11 ensym ( ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) )
12 9 10 11 3syl ( 𝐴 ∈ ω → 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) )
13 entr ( ( ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) )
14 6 12 13 syl2anc ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) )
15 onfin2 ω = ( On ∩ Fin )
16 inss2 ( On ∩ Fin ) ⊆ Fin
17 15 16 eqsstri ω ⊆ Fin
18 ficardom ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ∈ ω )
19 9 18 syl ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ ω )
20 17 19 sseldi ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ Fin )
21 php3 ( ( ( card ‘ 𝒫 𝐴 ) ∈ Fin ∧ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) )
22 21 ex ( ( card ‘ 𝒫 𝐴 ) ∈ Fin → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) )
23 20 22 syl ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) )
24 sdomnen ( ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) → ¬ ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) )
25 23 24 syl6 ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ¬ ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) )
26 14 25 mt2d ( 𝐴 ∈ ω → ¬ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) )
27 fvex ( 𝐹𝑎 ) ∈ V
28 ackbij1lem3 ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) )
29 elpwi ( 𝑎 ∈ 𝒫 𝐴𝑎𝐴 )
30 1 ackbij1lem12 ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎𝐴 ) → ( 𝐹𝑎 ) ⊆ ( 𝐹𝐴 ) )
31 28 29 30 syl2an ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝐹𝑎 ) ⊆ ( 𝐹𝐴 ) )
32 1 ackbij1lem10 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω
33 peano1 ∅ ∈ ω
34 32 33 f0cli ( 𝐹𝑎 ) ∈ ω
35 nnord ( ( 𝐹𝑎 ) ∈ ω → Ord ( 𝐹𝑎 ) )
36 34 35 ax-mp Ord ( 𝐹𝑎 )
37 32 33 f0cli ( 𝐹𝐴 ) ∈ ω
38 nnord ( ( 𝐹𝐴 ) ∈ ω → Ord ( 𝐹𝐴 ) )
39 37 38 ax-mp Ord ( 𝐹𝐴 )
40 ordsucsssuc ( ( Ord ( 𝐹𝑎 ) ∧ Ord ( 𝐹𝐴 ) ) → ( ( 𝐹𝑎 ) ⊆ ( 𝐹𝐴 ) ↔ suc ( 𝐹𝑎 ) ⊆ suc ( 𝐹𝐴 ) ) )
41 36 39 40 mp2an ( ( 𝐹𝑎 ) ⊆ ( 𝐹𝐴 ) ↔ suc ( 𝐹𝑎 ) ⊆ suc ( 𝐹𝐴 ) )
42 31 41 sylib ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹𝑎 ) ⊆ suc ( 𝐹𝐴 ) )
43 1 ackbij1lem14 ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = suc ( 𝐹𝐴 ) )
44 1 ackbij1lem8 ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) )
45 43 44 eqtr3d ( 𝐴 ∈ ω → suc ( 𝐹𝐴 ) = ( card ‘ 𝒫 𝐴 ) )
46 45 adantr ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹𝐴 ) = ( card ‘ 𝒫 𝐴 ) )
47 42 46 sseqtrd ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹𝑎 ) ⊆ ( card ‘ 𝒫 𝐴 ) )
48 sucssel ( ( 𝐹𝑎 ) ∈ V → ( suc ( 𝐹𝑎 ) ⊆ ( card ‘ 𝒫 𝐴 ) → ( 𝐹𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) )
49 27 47 48 mpsyl ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝐹𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) )
50 49 ralrimiva ( 𝐴 ∈ ω → ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) )
51 f1fun ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → Fun 𝐹 )
52 2 51 ax-mp Fun 𝐹
53 f1dm ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → dom 𝐹 = ( 𝒫 ω ∩ Fin ) )
54 2 53 ax-mp dom 𝐹 = ( 𝒫 ω ∩ Fin )
55 3 54 sseqtrrdi ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹 )
56 funimass4 ( ( Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) )
57 52 55 56 sylancr ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) )
58 50 57 mpbird ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) )
59 sspss ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) )
60 58 59 sylib ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) )
61 orel1 ( ¬ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) )
62 26 60 61 sylc ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) )