| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-2 |
|
| 2 |
1
|
fveq2i |
|
| 3 |
|
1nn0 |
|
| 4 |
|
ackvalsuc1mpt |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
peano2nn0 |
|
| 7 |
|
2nn0 |
|
| 8 |
|
ackval1 |
|
| 9 |
8
|
itcovalpc |
|
| 10 |
6 7 9
|
sylancl |
|
| 11 |
10
|
fveq1d |
|
| 12 |
|
eqidd |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
adantl |
|
| 15 |
3
|
a1i |
|
| 16 |
|
ovexd |
|
| 17 |
12 14 15 16
|
fvmptd |
|
| 18 |
|
nn0cn |
|
| 19 |
|
1cnd |
|
| 20 |
|
2cnd |
|
| 21 |
|
peano2cn |
|
| 22 |
20 21
|
mulcld |
|
| 23 |
19 22
|
addcomd |
|
| 24 |
|
id |
|
| 25 |
20 24 19
|
adddid |
|
| 26 |
25
|
oveq1d |
|
| 27 |
20 24
|
mulcld |
|
| 28 |
20 19
|
mulcld |
|
| 29 |
27 28 19
|
addassd |
|
| 30 |
|
2t1e2 |
|
| 31 |
30
|
oveq1i |
|
| 32 |
|
2p1e3 |
|
| 33 |
31 32
|
eqtri |
|
| 34 |
33
|
a1i |
|
| 35 |
34
|
oveq2d |
|
| 36 |
29 35
|
eqtrd |
|
| 37 |
23 26 36
|
3eqtrd |
|
| 38 |
18 37
|
syl |
|
| 39 |
11 17 38
|
3eqtrd |
|
| 40 |
39
|
mpteq2ia |
|
| 41 |
2 5 40
|
3eqtri |
|