Metamath Proof Explorer


Theorem ackval2

Description: The Ackermann function at 2. (Contributed by AV, 4-May-2024)

Ref Expression
Assertion ackval2 Could not format assertion : No typesetting found for |- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 df-2 2=1+1
2 1 fveq2i Could not format ( Ack ` 2 ) = ( Ack ` ( 1 + 1 ) ) : No typesetting found for |- ( Ack ` 2 ) = ( Ack ` ( 1 + 1 ) ) with typecode |-
3 1nn0 10
4 ackvalsuc1mpt Could not format ( 1 e. NN0 -> ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) ) : No typesetting found for |- ( 1 e. NN0 -> ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) ) with typecode |-
5 3 4 ax-mp Could not format ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) : No typesetting found for |- ( Ack ` ( 1 + 1 ) ) = ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) with typecode |-
6 peano2nn0 n0n+10
7 2nn0 20
8 ackval1 Could not format ( Ack ` 1 ) = ( i e. NN0 |-> ( i + 2 ) ) : No typesetting found for |- ( Ack ` 1 ) = ( i e. NN0 |-> ( i + 2 ) ) with typecode |-
9 8 itcovalpc Could not format ( ( ( n + 1 ) e. NN0 /\ 2 e. NN0 ) -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) : No typesetting found for |- ( ( ( n + 1 ) e. NN0 /\ 2 e. NN0 ) -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) with typecode |-
10 6 7 9 sylancl Could not format ( n e. NN0 -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) : No typesetting found for |- ( n e. NN0 -> ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) = ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ) with typecode |-
11 10 fveq1d Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( i e. NN0 |-> ( i + ( 2 x. ( n + 1 ) ) ) ) ` 1 ) ) with typecode |-
12 eqidd n0i0i+2n+1=i0i+2n+1
13 oveq1 i=1i+2n+1=1+2n+1
14 13 adantl n0i=1i+2n+1=1+2n+1
15 3 a1i n010
16 ovexd n01+2n+1V
17 12 14 15 16 fvmptd n0i0i+2n+11=1+2n+1
18 nn0cn n0n
19 1cnd n1
20 2cnd n2
21 peano2cn nn+1
22 20 21 mulcld n2n+1
23 19 22 addcomd n1+2n+1=2n+1+1
24 id nn
25 20 24 19 adddid n2n+1=2n+21
26 25 oveq1d n2n+1+1=2n+21+1
27 20 24 mulcld n2n
28 20 19 mulcld n21
29 27 28 19 addassd n2n+21+1=2n+21+1
30 2t1e2 21=2
31 30 oveq1i 21+1=2+1
32 2p1e3 2+1=3
33 31 32 eqtri 21+1=3
34 33 a1i n21+1=3
35 34 oveq2d n2n+21+1=2n+3
36 29 35 eqtrd n2n+21+1=2n+3
37 23 26 36 3eqtrd n1+2n+1=2n+3
38 18 37 syl n01+2n+1=2n+3
39 11 17 38 3eqtrd Could not format ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 x. n ) + 3 ) ) : No typesetting found for |- ( n e. NN0 -> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) = ( ( 2 x. n ) + 3 ) ) with typecode |-
40 39 mpteq2ia Could not format ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) : No typesetting found for |- ( n e. NN0 |-> ( ( ( IterComp ` ( Ack ` 1 ) ) ` ( n + 1 ) ) ` 1 ) ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) with typecode |-
41 2 5 40 3eqtri Could not format ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) : No typesetting found for |- ( Ack ` 2 ) = ( n e. NN0 |-> ( ( 2 x. n ) + 3 ) ) with typecode |-