| Step | Hyp | Ref | Expression | 
						
							| 1 |  | acunirnmpt.0 |  | 
						
							| 2 |  | acunirnmpt.1 |  | 
						
							| 3 |  | acunirnmpt.2 |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 |  | simplll |  | 
						
							| 6 |  | simplr |  | 
						
							| 7 | 5 6 2 | syl2anc |  | 
						
							| 8 | 4 7 | eqnetrd |  | 
						
							| 9 | 3 | eleq2i |  | 
						
							| 10 |  | vex |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 | 11 | elrnmpt |  | 
						
							| 13 | 10 12 | ax-mp |  | 
						
							| 14 | 9 13 | bitri |  | 
						
							| 15 | 14 | biimpi |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 8 16 | r19.29a |  | 
						
							| 18 | 17 | ralrimiva |  | 
						
							| 19 |  | mptexg |  | 
						
							| 20 |  | rnexg |  | 
						
							| 21 | 1 19 20 | 3syl |  | 
						
							| 22 | 3 21 | eqeltrid |  | 
						
							| 23 |  | raleq |  | 
						
							| 24 |  | id |  | 
						
							| 25 |  | unieq |  | 
						
							| 26 | 24 25 | feq23d |  | 
						
							| 27 |  | raleq |  | 
						
							| 28 | 26 27 | anbi12d |  | 
						
							| 29 | 28 | exbidv |  | 
						
							| 30 | 23 29 | imbi12d |  | 
						
							| 31 |  | vex |  | 
						
							| 32 | 31 | ac5b |  | 
						
							| 33 | 30 32 | vtoclg |  | 
						
							| 34 | 22 33 | syl |  | 
						
							| 35 | 18 34 | mpd |  | 
						
							| 36 | 16 | adantr |  | 
						
							| 37 |  | simpllr |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 | 37 38 | eleqtrd |  | 
						
							| 40 | 39 | ex |  | 
						
							| 41 | 40 | reximdva |  | 
						
							| 42 | 36 41 | mpd |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 43 | ralimdva |  | 
						
							| 45 | 44 | anim2d |  | 
						
							| 46 | 45 | eximdv |  | 
						
							| 47 | 35 46 | mpd |  |