Metamath Proof Explorer


Theorem acunirnmpt2

Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019)

Ref Expression
Hypotheses acunirnmpt.0 φAV
acunirnmpt.1 φjAB
acunirnmpt2.2 C=ranjAB
acunirnmpt2.3 j=fxB=D
Assertion acunirnmpt2 φff:CAxCxD

Proof

Step Hyp Ref Expression
1 acunirnmpt.0 φAV
2 acunirnmpt.1 φjAB
3 acunirnmpt2.2 C=ranjAB
4 acunirnmpt2.3 j=fxB=D
5 simplr φxCyranjABxyyranjAB
6 vex yV
7 eqid jAB=jAB
8 7 elrnmpt yVyranjABjAy=B
9 6 8 ax-mp yranjABjAy=B
10 5 9 sylib φxCyranjABxyjAy=B
11 nfv jφxC
12 nfcv _jy
13 nfmpt1 _jjAB
14 13 nfrn _jranjAB
15 12 14 nfel jyranjAB
16 11 15 nfan jφxCyranjAB
17 nfv jxy
18 16 17 nfan jφxCyranjABxy
19 simpllr φxCyranjABxyjAy=Bxy
20 simpr φxCyranjABxyjAy=By=B
21 19 20 eleqtrd φxCyranjABxyjAy=BxB
22 21 ex φxCyranjABxyjAy=BxB
23 22 ex φxCyranjABxyjAy=BxB
24 18 23 reximdai φxCyranjABxyjAy=BjAxB
25 10 24 mpd φxCyranjABxyjAxB
26 3 eleq2i xCxranjAB
27 26 biimpi xCxranjAB
28 eluni2 xranjAByranjABxy
29 27 28 sylib xCyranjABxy
30 29 adantl φxCyranjABxy
31 25 30 r19.29a φxCjAxB
32 31 ralrimiva φxCjAxB
33 mptexg AVjABV
34 rnexg jABVranjABV
35 uniexg ranjABVranjABV
36 1 33 34 35 4syl φranjABV
37 3 36 eqeltrid φCV
38 id c=Cc=C
39 38 raleqdv c=CxcjAxBxCjAxB
40 38 feq2d c=Cf:cAf:CA
41 38 raleqdv c=CxcxDxCxD
42 40 41 anbi12d c=Cf:cAxcxDf:CAxCxD
43 42 exbidv c=Cff:cAxcxDff:CAxCxD
44 39 43 imbi12d c=CxcjAxBff:cAxcxDxCjAxBff:CAxCxD
45 vex cV
46 4 eleq2d j=fxxBxD
47 45 46 ac6s xcjAxBff:cAxcxD
48 44 47 vtoclg CVxCjAxBff:CAxCxD
49 37 48 syl φxCjAxBff:CAxCxD
50 32 49 mpd φff:CAxCxD