Description: Axiom of choice for the union of the range of a mapping to function. (Contributed by Thierry Arnoux, 7-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | acunirnmpt.0 | |
|
acunirnmpt.1 | |
||
acunirnmpt2.2 | |
||
acunirnmpt2.3 | |
||
Assertion | acunirnmpt2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acunirnmpt.0 | |
|
2 | acunirnmpt.1 | |
|
3 | acunirnmpt2.2 | |
|
4 | acunirnmpt2.3 | |
|
5 | simplr | |
|
6 | vex | |
|
7 | eqid | |
|
8 | 7 | elrnmpt | |
9 | 6 8 | ax-mp | |
10 | 5 9 | sylib | |
11 | nfv | |
|
12 | nfcv | |
|
13 | nfmpt1 | |
|
14 | 13 | nfrn | |
15 | 12 14 | nfel | |
16 | 11 15 | nfan | |
17 | nfv | |
|
18 | 16 17 | nfan | |
19 | simpllr | |
|
20 | simpr | |
|
21 | 19 20 | eleqtrd | |
22 | 21 | ex | |
23 | 22 | ex | |
24 | 18 23 | reximdai | |
25 | 10 24 | mpd | |
26 | 3 | eleq2i | |
27 | 26 | biimpi | |
28 | eluni2 | |
|
29 | 27 28 | sylib | |
30 | 29 | adantl | |
31 | 25 30 | r19.29a | |
32 | 31 | ralrimiva | |
33 | mptexg | |
|
34 | rnexg | |
|
35 | uniexg | |
|
36 | 1 33 34 35 | 4syl | |
37 | 3 36 | eqeltrid | |
38 | id | |
|
39 | 38 | raleqdv | |
40 | 38 | feq2d | |
41 | 38 | raleqdv | |
42 | 40 41 | anbi12d | |
43 | 42 | exbidv | |
44 | 39 43 | imbi12d | |
45 | vex | |
|
46 | 4 | eleq2d | |
47 | 45 46 | ac6s | |
48 | 44 47 | vtoclg | |
49 | 37 48 | syl | |
50 | 32 49 | mpd | |