| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|
| 2 |
|
ax-rnegex |
|
| 3 |
|
ax-1ne0 |
|
| 4 |
|
oveq2 |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
5
|
biimpcd |
|
| 7 |
|
oveq2 |
|
| 8 |
|
ax-icn |
|
| 9 |
8 8
|
mulcli |
|
| 10 |
9 9
|
mulcli |
|
| 11 |
|
ax-1cn |
|
| 12 |
|
0cn |
|
| 13 |
10 11 12
|
adddii |
|
| 14 |
10
|
mulridi |
|
| 15 |
|
mul01 |
|
| 16 |
10 15
|
ax-mp |
|
| 17 |
|
ax-i2m1 |
|
| 18 |
16 17
|
eqtr4i |
|
| 19 |
14 18
|
oveq12i |
|
| 20 |
13 19
|
eqtri |
|
| 21 |
20 16
|
eqeq12i |
|
| 22 |
10 9 11
|
addassi |
|
| 23 |
9
|
mulridi |
|
| 24 |
23
|
oveq2i |
|
| 25 |
9 9 11
|
adddii |
|
| 26 |
17
|
oveq2i |
|
| 27 |
|
mul01 |
|
| 28 |
9 27
|
ax-mp |
|
| 29 |
26 28
|
eqtri |
|
| 30 |
25 29
|
eqtr3i |
|
| 31 |
24 30
|
eqtr3i |
|
| 32 |
31
|
oveq1i |
|
| 33 |
22 32
|
eqtr3i |
|
| 34 |
|
00id |
|
| 35 |
34
|
eqcomi |
|
| 36 |
33 35
|
eqeq12i |
|
| 37 |
|
0re |
|
| 38 |
|
readdcan |
|
| 39 |
1 37 37 38
|
mp3an |
|
| 40 |
21 36 39
|
3bitri |
|
| 41 |
7 40
|
sylib |
|
| 42 |
6 41
|
syl6 |
|
| 43 |
42
|
necon3d |
|
| 44 |
3 43
|
mpi |
|
| 45 |
|
ax-rrecex |
|
| 46 |
44 45
|
sylan2 |
|
| 47 |
|
simpr |
|
| 48 |
|
simplrl |
|
| 49 |
48
|
recnd |
|
| 50 |
47 49
|
mulcld |
|
| 51 |
|
simplll |
|
| 52 |
51
|
recnd |
|
| 53 |
12
|
a1i |
|
| 54 |
50 52 53
|
adddid |
|
| 55 |
11
|
a1i |
|
| 56 |
55 52 53
|
addassd |
|
| 57 |
|
simpllr |
|
| 58 |
57
|
oveq1d |
|
| 59 |
56 58
|
eqtr3d |
|
| 60 |
34 59 57
|
3eqtr4a |
|
| 61 |
37
|
a1i |
|
| 62 |
51 61
|
readdcld |
|
| 63 |
1
|
a1i |
|
| 64 |
|
readdcan |
|
| 65 |
62 51 63 64
|
syl3anc |
|
| 66 |
60 65
|
mpbid |
|
| 67 |
66
|
oveq2d |
|
| 68 |
54 67
|
eqtr3d |
|
| 69 |
|
mul31 |
|
| 70 |
47 49 52 69
|
syl3anc |
|
| 71 |
|
simplrr |
|
| 72 |
71
|
oveq1d |
|
| 73 |
47
|
mullidd |
|
| 74 |
70 72 73
|
3eqtrd |
|
| 75 |
|
mul01 |
|
| 76 |
50 75
|
syl |
|
| 77 |
74 76
|
oveq12d |
|
| 78 |
68 77 74
|
3eqtr3d |
|
| 79 |
78
|
exp42 |
|
| 80 |
79
|
rexlimdv |
|
| 81 |
46 80
|
mpd |
|
| 82 |
81
|
rexlimiva |
|
| 83 |
1 2 82
|
mp2b |
|