Metamath Proof Explorer


Theorem addrid

Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion addrid AA+0=A

Proof

Step Hyp Ref Expression
1 1re 1
2 ax-rnegex 1c1+c=0
3 ax-1ne0 10
4 oveq2 c=01+c=1+0
5 4 eqeq1d c=01+c=01+0=0
6 5 biimpcd 1+c=0c=01+0=0
7 oveq2 1+0=0iiii1+0=iiii0
8 ax-icn i
9 8 8 mulcli ii
10 9 9 mulcli iiii
11 ax-1cn 1
12 0cn 0
13 10 11 12 adddii iiii1+0=iiii1+iiii0
14 10 mulridi iiii1=iiii
15 mul01 iiiiiiii0=0
16 10 15 ax-mp iiii0=0
17 ax-i2m1 ii+1=0
18 16 17 eqtr4i iiii0=ii+1
19 14 18 oveq12i iiii1+iiii0=iiii+ii+1
20 13 19 eqtri iiii1+0=iiii+ii+1
21 20 16 eqeq12i iiii1+0=iiii0iiii+ii+1=0
22 10 9 11 addassi iiii+ii+1=iiii+ii+1
23 9 mulridi ii1=ii
24 23 oveq2i iiii+ii1=iiii+ii
25 9 9 11 adddii iiii+1=iiii+ii1
26 17 oveq2i iiii+1=ii0
27 mul01 iiii0=0
28 9 27 ax-mp ii0=0
29 26 28 eqtri iiii+1=0
30 25 29 eqtr3i iiii+ii1=0
31 24 30 eqtr3i iiii+ii=0
32 31 oveq1i iiii+ii+1=0+1
33 22 32 eqtr3i iiii+ii+1=0+1
34 00id 0+0=0
35 34 eqcomi 0=0+0
36 33 35 eqeq12i iiii+ii+1=00+1=0+0
37 0re 0
38 readdcan 1000+1=0+01=0
39 1 37 37 38 mp3an 0+1=0+01=0
40 21 36 39 3bitri iiii1+0=iiii01=0
41 7 40 sylib 1+0=01=0
42 6 41 syl6 1+c=0c=01=0
43 42 necon3d 1+c=010c0
44 3 43 mpi 1+c=0c0
45 ax-rrecex cc0xcx=1
46 44 45 sylan2 c1+c=0xcx=1
47 simpr c1+c=0xcx=1AA
48 simplrl c1+c=0xcx=1Ax
49 48 recnd c1+c=0xcx=1Ax
50 47 49 mulcld c1+c=0xcx=1AAx
51 simplll c1+c=0xcx=1Ac
52 51 recnd c1+c=0xcx=1Ac
53 12 a1i c1+c=0xcx=1A0
54 50 52 53 adddid c1+c=0xcx=1AAxc+0=Axc+Ax0
55 11 a1i c1+c=0xcx=1A1
56 55 52 53 addassd c1+c=0xcx=1A1+c+0=1+c+0
57 simpllr c1+c=0xcx=1A1+c=0
58 57 oveq1d c1+c=0xcx=1A1+c+0=0+0
59 56 58 eqtr3d c1+c=0xcx=1A1+c+0=0+0
60 34 59 57 3eqtr4a c1+c=0xcx=1A1+c+0=1+c
61 37 a1i c1+c=0xcx=1A0
62 51 61 readdcld c1+c=0xcx=1Ac+0
63 1 a1i c1+c=0xcx=1A1
64 readdcan c+0c11+c+0=1+cc+0=c
65 62 51 63 64 syl3anc c1+c=0xcx=1A1+c+0=1+cc+0=c
66 60 65 mpbid c1+c=0xcx=1Ac+0=c
67 66 oveq2d c1+c=0xcx=1AAxc+0=Axc
68 54 67 eqtr3d c1+c=0xcx=1AAxc+Ax0=Axc
69 mul31 AxcAxc=cxA
70 47 49 52 69 syl3anc c1+c=0xcx=1AAxc=cxA
71 simplrr c1+c=0xcx=1Acx=1
72 71 oveq1d c1+c=0xcx=1AcxA=1A
73 47 mullidd c1+c=0xcx=1A1A=A
74 70 72 73 3eqtrd c1+c=0xcx=1AAxc=A
75 mul01 AxAx0=0
76 50 75 syl c1+c=0xcx=1AAx0=0
77 74 76 oveq12d c1+c=0xcx=1AAxc+Ax0=A+0
78 68 77 74 3eqtr3d c1+c=0xcx=1AA+0=A
79 78 exp42 c1+c=0xcx=1AA+0=A
80 79 rexlimdv c1+c=0xcx=1AA+0=A
81 46 80 mpd c1+c=0AA+0=A
82 81 rexlimiva c1+c=0AA+0=A
83 1 2 82 mp2b AA+0=A