Metamath Proof Explorer


Theorem addsproplem1

Description: Lemma for surreal addition properties. To prove closure on surreal addition we need to prove that addition is compatible with order at the same time. We do this by inducting over the maximum of two natural sums of the birthdays of surreals numbers. In the final step we will loop around and use tfr3 to prove this of all surreals. This first lemma just instantiates the inductive hypothesis so we do not need to do it continuously throughout the proof. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
addsproplem1.2 φANo
addsproplem1.3 φBNo
addsproplem1.4 φCNo
addsproplem1.5 No typesetting found for |- ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) with typecode |-
Assertion addsproplem1 Could not format assertion : No typesetting found for |- ( ph -> ( ( A +s B ) e. No /\ ( B ( B +s A )

Proof

Step Hyp Ref Expression
1 addsproplem.1 Could not format ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
2 addsproplem1.2 φANo
3 addsproplem1.3 φBNo
4 addsproplem1.4 φCNo
5 addsproplem1.5 Could not format ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) with typecode |-
6 2 3 4 3jca φANoBNoCNo
7 fveq2 x=Abdayx=bdayA
8 7 oveq1d Could not format ( x = A -> ( ( bday ` x ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` y ) ) ) : No typesetting found for |- ( x = A -> ( ( bday ` x ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` y ) ) ) with typecode |-
9 7 oveq1d Could not format ( x = A -> ( ( bday ` x ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` z ) ) ) : No typesetting found for |- ( x = A -> ( ( bday ` x ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` z ) ) ) with typecode |-
10 8 9 uneq12d Could not format ( x = A -> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) : No typesetting found for |- ( x = A -> ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) with typecode |-
11 10 eleq1d Could not format ( x = A -> ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) : No typesetting found for |- ( x = A -> ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) with typecode |-
12 oveq1 Could not format ( x = A -> ( x +s y ) = ( A +s y ) ) : No typesetting found for |- ( x = A -> ( x +s y ) = ( A +s y ) ) with typecode |-
13 12 eleq1d Could not format ( x = A -> ( ( x +s y ) e. No <-> ( A +s y ) e. No ) ) : No typesetting found for |- ( x = A -> ( ( x +s y ) e. No <-> ( A +s y ) e. No ) ) with typecode |-
14 oveq2 Could not format ( x = A -> ( y +s x ) = ( y +s A ) ) : No typesetting found for |- ( x = A -> ( y +s x ) = ( y +s A ) ) with typecode |-
15 oveq2 Could not format ( x = A -> ( z +s x ) = ( z +s A ) ) : No typesetting found for |- ( x = A -> ( z +s x ) = ( z +s A ) ) with typecode |-
16 14 15 breq12d Could not format ( x = A -> ( ( y +s x ) ( y +s A ) ( ( y +s x ) ( y +s A )
17 16 imbi2d Could not format ( x = A -> ( ( y ( y +s x ) ( y ( y +s A ) ( ( y ( y +s x ) ( y ( y +s A )
18 13 17 anbi12d Could not format ( x = A -> ( ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( A +s y ) e. No /\ ( y ( y +s A )
19 11 18 imbi12d Could not format ( x = A -> ( ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y ( y +s A )
20 fveq2 y=Bbdayy=bdayB
21 20 oveq2d Could not format ( y = B -> ( ( bday ` A ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` B ) ) ) : No typesetting found for |- ( y = B -> ( ( bday ` A ) +no ( bday ` y ) ) = ( ( bday ` A ) +no ( bday ` B ) ) ) with typecode |-
22 21 uneq1d Could not format ( y = B -> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) : No typesetting found for |- ( y = B -> ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) ) with typecode |-
23 22 eleq1d Could not format ( y = B -> ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) : No typesetting found for |- ( y = B -> ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) with typecode |-
24 oveq2 Could not format ( y = B -> ( A +s y ) = ( A +s B ) ) : No typesetting found for |- ( y = B -> ( A +s y ) = ( A +s B ) ) with typecode |-
25 24 eleq1d Could not format ( y = B -> ( ( A +s y ) e. No <-> ( A +s B ) e. No ) ) : No typesetting found for |- ( y = B -> ( ( A +s y ) e. No <-> ( A +s B ) e. No ) ) with typecode |-
26 breq1 y=By<szB<sz
27 oveq1 Could not format ( y = B -> ( y +s A ) = ( B +s A ) ) : No typesetting found for |- ( y = B -> ( y +s A ) = ( B +s A ) ) with typecode |-
28 27 breq1d Could not format ( y = B -> ( ( y +s A ) ( B +s A ) ( ( y +s A ) ( B +s A )
29 26 28 imbi12d Could not format ( y = B -> ( ( y ( y +s A ) ( B ( B +s A ) ( ( y ( y +s A ) ( B ( B +s A )
30 25 29 anbi12d Could not format ( y = B -> ( ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A )
31 23 30 imbi12d Could not format ( y = B -> ( ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( ( ( bday ` A ) +no ( bday ` y ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s y ) e. No /\ ( y ( y +s A ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A )
32 fveq2 z=Cbdayz=bdayC
33 32 oveq2d Could not format ( z = C -> ( ( bday ` A ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` C ) ) ) : No typesetting found for |- ( z = C -> ( ( bday ` A ) +no ( bday ` z ) ) = ( ( bday ` A ) +no ( bday ` C ) ) ) with typecode |-
34 33 uneq2d Could not format ( z = C -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) ) : No typesetting found for |- ( z = C -> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) = ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) ) with typecode |-
35 34 eleq1d Could not format ( z = C -> ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) : No typesetting found for |- ( z = C -> ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) <-> ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) ) ) with typecode |-
36 breq2 z=CB<szB<sC
37 oveq1 Could not format ( z = C -> ( z +s A ) = ( C +s A ) ) : No typesetting found for |- ( z = C -> ( z +s A ) = ( C +s A ) ) with typecode |-
38 37 breq2d Could not format ( z = C -> ( ( B +s A ) ( B +s A ) ( ( B +s A ) ( B +s A )
39 36 38 imbi12d Could not format ( z = C -> ( ( B ( B +s A ) ( B ( B +s A ) ( ( B ( B +s A ) ( B ( B +s A )
40 39 anbi2d Could not format ( z = C -> ( ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A )
41 35 40 imbi12d Could not format ( z = C -> ( ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A )
42 19 31 41 rspc3v Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) ( ( ( ( bday ` A ) +no ( bday ` B ) ) u. ( ( bday ` A ) +no ( bday ` C ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( A +s B ) e. No /\ ( B ( B +s A )
43 6 1 5 42 syl3c Could not format ( ph -> ( ( A +s B ) e. No /\ ( B ( B +s A ) ( ( A +s B ) e. No /\ ( B ( B +s A )