Metamath Proof Explorer


Theorem ajfval

Description: The adjoint function. (Contributed by NM, 25-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ajfval.1 X=BaseSetU
ajfval.2 Y=BaseSetW
ajfval.3 P=𝑖OLDU
ajfval.4 Q=𝑖OLDW
ajfval.5 A=UadjW
Assertion ajfval UNrmCVecWNrmCVecA=ts|t:XYs:YXxXyYtxQy=xPsy

Proof

Step Hyp Ref Expression
1 ajfval.1 X=BaseSetU
2 ajfval.2 Y=BaseSetW
3 ajfval.3 P=𝑖OLDU
4 ajfval.4 Q=𝑖OLDW
5 ajfval.5 A=UadjW
6 fveq2 u=UBaseSetu=BaseSetU
7 6 1 eqtr4di u=UBaseSetu=X
8 7 feq2d u=Ut:BaseSetuBaseSetwt:XBaseSetw
9 7 feq3d u=Us:BaseSetwBaseSetus:BaseSetwX
10 fveq2 u=U𝑖OLDu=𝑖OLDU
11 10 3 eqtr4di u=U𝑖OLDu=P
12 11 oveqd u=Ux𝑖OLDusy=xPsy
13 12 eqeq2d u=Utx𝑖OLDwy=x𝑖OLDusytx𝑖OLDwy=xPsy
14 13 ralbidv u=UyBaseSetwtx𝑖OLDwy=x𝑖OLDusyyBaseSetwtx𝑖OLDwy=xPsy
15 7 14 raleqbidv u=UxBaseSetuyBaseSetwtx𝑖OLDwy=x𝑖OLDusyxXyBaseSetwtx𝑖OLDwy=xPsy
16 8 9 15 3anbi123d u=Ut:BaseSetuBaseSetws:BaseSetwBaseSetuxBaseSetuyBaseSetwtx𝑖OLDwy=x𝑖OLDusyt:XBaseSetws:BaseSetwXxXyBaseSetwtx𝑖OLDwy=xPsy
17 16 opabbidv u=Uts|t:BaseSetuBaseSetws:BaseSetwBaseSetuxBaseSetuyBaseSetwtx𝑖OLDwy=x𝑖OLDusy=ts|t:XBaseSetws:BaseSetwXxXyBaseSetwtx𝑖OLDwy=xPsy
18 fveq2 w=WBaseSetw=BaseSetW
19 18 2 eqtr4di w=WBaseSetw=Y
20 19 feq3d w=Wt:XBaseSetwt:XY
21 19 feq2d w=Ws:BaseSetwXs:YX
22 fveq2 w=W𝑖OLDw=𝑖OLDW
23 22 4 eqtr4di w=W𝑖OLDw=Q
24 23 oveqd w=Wtx𝑖OLDwy=txQy
25 24 eqeq1d w=Wtx𝑖OLDwy=xPsytxQy=xPsy
26 19 25 raleqbidv w=WyBaseSetwtx𝑖OLDwy=xPsyyYtxQy=xPsy
27 26 ralbidv w=WxXyBaseSetwtx𝑖OLDwy=xPsyxXyYtxQy=xPsy
28 20 21 27 3anbi123d w=Wt:XBaseSetws:BaseSetwXxXyBaseSetwtx𝑖OLDwy=xPsyt:XYs:YXxXyYtxQy=xPsy
29 28 opabbidv w=Wts|t:XBaseSetws:BaseSetwXxXyBaseSetwtx𝑖OLDwy=xPsy=ts|t:XYs:YXxXyYtxQy=xPsy
30 df-aj adj=uNrmCVec,wNrmCVects|t:BaseSetuBaseSetws:BaseSetwBaseSetuxBaseSetuyBaseSetwtx𝑖OLDwy=x𝑖OLDusy
31 ovex YXV
32 ovex XYV
33 31 32 xpex YX×XYV
34 2 fvexi YV
35 1 fvexi XV
36 34 35 elmap tYXt:XY
37 35 34 elmap sXYs:YX
38 36 37 anbi12i tYXsXYt:XYs:YX
39 38 biimpri t:XYs:YXtYXsXY
40 39 3adant3 t:XYs:YXxXyYtxQy=xPsytYXsXY
41 40 ssopab2i ts|t:XYs:YXxXyYtxQy=xPsyts|tYXsXY
42 df-xp YX×XY=ts|tYXsXY
43 41 42 sseqtrri ts|t:XYs:YXxXyYtxQy=xPsyYX×XY
44 33 43 ssexi ts|t:XYs:YXxXyYtxQy=xPsyV
45 17 29 30 44 ovmpo UNrmCVecWNrmCVecUadjW=ts|t:XYs:YXxXyYtxQy=xPsy
46 5 45 eqtrid UNrmCVecWNrmCVecA=ts|t:XYs:YXxXyYtxQy=xPsy