Metamath Proof Explorer


Theorem aks4d1

Description: Lemma 4.1 from https://www3.nd.edu/%7eandyp/notes/AKS.pdf , existence of a polynomially bounded number by the digit size of N that asserts the polynomial subspace that we need to search to guarantee that N is prime. Eventually we want to show that the polynomial searching space is bounded by degree B . (Contributed by metakunt, 14-Nov-2024)

Ref Expression
Hypotheses aks4d1.1 φ N 3
aks4d1.2 B = log 2 N 5
Assertion aks4d1 φ r 1 B N gcd r = 1 log 2 N 2 < od r N

Proof

Step Hyp Ref Expression
1 aks4d1.1 φ N 3
2 aks4d1.2 B = log 2 N 5
3 oveq2 b = a N b = N a
4 3 oveq1d b = a N b 1 = N a 1
5 4 cbvprodv b = 1 log 2 N 2 N b 1 = a = 1 log 2 N 2 N a 1
6 5 oveq2i N log 2 B b = 1 log 2 N 2 N b 1 = N log 2 B a = 1 log 2 N 2 N a 1
7 id h = k h = k
8 oveq2 c = b N c = N b
9 8 oveq1d c = b N c 1 = N b 1
10 9 cbvprodv c = 1 log 2 N 2 N c 1 = b = 1 log 2 N 2 N b 1
11 10 oveq2i N log 2 B c = 1 log 2 N 2 N c 1 = N log 2 B b = 1 log 2 N 2 N b 1
12 11 a1i h = k N log 2 B c = 1 log 2 N 2 N c 1 = N log 2 B b = 1 log 2 N 2 N b 1
13 7 12 breq12d h = k h N log 2 B c = 1 log 2 N 2 N c 1 k N log 2 B b = 1 log 2 N 2 N b 1
14 13 notbid h = k ¬ h N log 2 B c = 1 log 2 N 2 N c 1 ¬ k N log 2 B b = 1 log 2 N 2 N b 1
15 14 cbvrabv h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 = k 1 B | ¬ k N log 2 B b = 1 log 2 N 2 N b 1
16 15 infeq1i sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < = sup k 1 B | ¬ k N log 2 B b = 1 log 2 N 2 N b 1 <
17 1 6 2 16 aks4d1p4 φ sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < 1 B ¬ sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N log 2 B b = 1 log 2 N 2 N b 1
18 17 simpld φ sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < 1 B
19 oveq2 r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N gcd r = N gcd sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 <
20 19 adantl φ r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N gcd r = N gcd sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 <
21 20 eqeq1d φ r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N gcd r = 1 N gcd sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < = 1
22 fveq2 r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < od r = od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 <
23 22 adantl φ r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < od r = od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 <
24 23 fveq1d φ r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < od r N = od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N
25 24 breq2d φ r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < log 2 N 2 < od r N log 2 N 2 < od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N
26 21 25 anbi12d φ r = sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N gcd r = 1 log 2 N 2 < od r N N gcd sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < = 1 log 2 N 2 < od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N
27 1 6 2 16 aks4d1p8 φ N gcd sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < = 1
28 1 6 2 16 aks4d1p9 φ log 2 N 2 < od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N
29 27 28 jca φ N gcd sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < = 1 log 2 N 2 < od sup h 1 B | ¬ h N log 2 B c = 1 log 2 N 2 N c 1 < N
30 18 26 29 rspcedvd φ r 1 B N gcd r = 1 log 2 N 2 < od r N