Description: Exponential law for finite products, special case. (Contributed by metakunt, 22-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aks4d1p1p1.1 | |
|
aks4d1p1p1.2 | |
||
Assertion | aks4d1p1p1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p1p1.1 | |
|
2 | aks4d1p1p1.2 | |
|
3 | 1 | rpcnd | |
4 | 3 | adantr | |
5 | 1 | rpne0d | |
6 | 5 | adantr | |
7 | elfzelz | |
|
8 | 7 | zcnd | |
9 | 8 | adantl | |
10 | 4 6 9 | 3jca | |
11 | cxpef | |
|
12 | 10 11 | syl | |
13 | 12 | prodeq2dv | |
14 | eqid | |
|
15 | nnuz | |
|
16 | 2 15 | eleqtrdi | |
17 | eluzelcn | |
|
18 | 17 | adantl | |
19 | 3 | adantr | |
20 | 5 | adantr | |
21 | 19 20 | logcld | |
22 | 18 21 | mulcld | |
23 | 14 16 22 | fprodefsum | |
24 | fzfid | |
|
25 | 3 5 | logcld | |
26 | 24 25 9 | fsummulc1 | |
27 | 26 | eqcomd | |
28 | 27 | fveq2d | |
29 | 24 9 | fsumcl | |
30 | 3 5 29 | cxpefd | |
31 | 30 | eqcomd | |
32 | 28 31 | eqtrd | |
33 | 23 32 | eqtrd | |
34 | 13 33 | eqtrd | |