Metamath Proof Explorer


Theorem algcvga

Description: The countdown function C remains 0 after N steps. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Hypotheses algcvga.1 F:SS
algcvga.2 R=seq0F1st0×A
algcvga.3 C:S0
algcvga.4 zSCFz0CFz<Cz
algcvga.5 N=CA
Assertion algcvga ASKNCRK=0

Proof

Step Hyp Ref Expression
1 algcvga.1 F:SS
2 algcvga.2 R=seq0F1st0×A
3 algcvga.3 C:S0
4 algcvga.4 zSCFz0CFz<Cz
5 algcvga.5 N=CA
6 3 ffvelcdmi ASCA0
7 5 6 eqeltrid ASN0
8 nn0z N0N
9 eluz1 NKNKNK
10 2fveq3 m=NCRm=CRN
11 10 eqeq1d m=NCRm=0CRN=0
12 11 imbi2d m=NASCRm=0ASCRN=0
13 2fveq3 m=kCRm=CRk
14 13 eqeq1d m=kCRm=0CRk=0
15 14 imbi2d m=kASCRm=0ASCRk=0
16 2fveq3 m=k+1CRm=CRk+1
17 16 eqeq1d m=k+1CRm=0CRk+1=0
18 17 imbi2d m=k+1ASCRm=0ASCRk+1=0
19 2fveq3 m=KCRm=CRK
20 19 eqeq1d m=KCRm=0CRK=0
21 20 imbi2d m=KASCRm=0ASCRK=0
22 1 2 3 4 5 algcvg ASCRN=0
23 22 a1i NASCRN=0
24 nn0ge0 N00N
25 24 adantr N0k0N
26 0re 0
27 nn0re N0N
28 zre kk
29 letr 0Nk0NNk0k
30 26 27 28 29 mp3an3an N0k0NNk0k
31 25 30 mpand N0kNk0k
32 elnn0z k0k0k
33 32 simplbi2 k0kk0
34 33 adantl N0k0kk0
35 31 34 syld N0kNkk0
36 7 35 sylan ASkNkk0
37 36 impr ASkNkk0
38 37 expcom kNkASk0
39 38 3adant1 NkNkASk0
40 39 ancld NkNkASASk0
41 nn0uz 0=0
42 0zd AS0
43 id ASAS
44 1 a1i ASF:SS
45 41 2 42 43 44 algrf ASR:0S
46 45 ffvelcdmda ASk0RkS
47 2fveq3 z=RkCFz=CFRk
48 47 neeq1d z=RkCFz0CFRk0
49 fveq2 z=RkCz=CRk
50 47 49 breq12d z=RkCFz<CzCFRk<CRk
51 48 50 imbi12d z=RkCFz0CFz<CzCFRk0CFRk<CRk
52 51 4 vtoclga RkSCFRk0CFRk<CRk
53 1 3 algcvgb RkSCFRk0CFRk<CRkCRk0CFRk<CRkCRk=0CFRk=0
54 simpr CRk0CFRk<CRkCRk=0CFRk=0CRk=0CFRk=0
55 53 54 syl6bi RkSCFRk0CFRk<CRkCRk=0CFRk=0
56 52 55 mpd RkSCRk=0CFRk=0
57 46 56 syl ASk0CRk=0CFRk=0
58 41 2 42 43 44 algrp1 ASk0Rk+1=FRk
59 58 fveqeq2d ASk0CRk+1=0CFRk=0
60 57 59 sylibrd ASk0CRk=0CRk+1=0
61 40 60 syl6 NkNkASCRk=0CRk+1=0
62 61 a2d NkNkASCRk=0ASCRk+1=0
63 12 15 18 21 23 62 uzind NKNKASCRK=0
64 63 3expib NKNKASCRK=0
65 9 64 sylbid NKNASCRK=0
66 8 65 syl N0KNASCRK=0
67 66 com3r ASN0KNCRK=0
68 7 67 mpd ASKNCRK=0