Metamath Proof Explorer


Theorem amgm4d

Description: Arithmetic-geometric mean inequality for n = 4 . (Contributed by Stanislas Polu, 11-Sep-2020)

Ref Expression
Hypotheses amgm4d.0 φA+
amgm4d.1 φB+
amgm4d.2 φC+
amgm4d.3 φD+
Assertion amgm4d φABCD14A+B+C+D4

Proof

Step Hyp Ref Expression
1 amgm4d.0 φA+
2 amgm4d.1 φB+
3 amgm4d.2 φC+
4 amgm4d.3 φD+
5 eqid mulGrpfld=mulGrpfld
6 fzofi 0..^4Fin
7 6 a1i φ0..^4Fin
8 4nn 4
9 lbfzo0 00..^44
10 8 9 mpbir 00..^4
11 ne0i 00..^40..^4
12 10 11 mp1i φ0..^4
13 1 2 3 4 s4cld φ⟨“ABCD”⟩Word+
14 wrdf ⟨“ABCD”⟩Word+⟨“ABCD”⟩:0..^⟨“ABCD”⟩+
15 13 14 syl φ⟨“ABCD”⟩:0..^⟨“ABCD”⟩+
16 s4len ⟨“ABCD”⟩=4
17 16 a1i φ⟨“ABCD”⟩=4
18 17 oveq2d φ0..^⟨“ABCD”⟩=0..^4
19 18 feq2d φ⟨“ABCD”⟩:0..^⟨“ABCD”⟩+⟨“ABCD”⟩:0..^4+
20 15 19 mpbid φ⟨“ABCD”⟩:0..^4+
21 5 7 12 20 amgmlem φmulGrpfld⟨“ABCD”⟩10..^4fld⟨“ABCD”⟩0..^4
22 cnring fldRing
23 5 ringmgp fldRingmulGrpfldMnd
24 22 23 mp1i φmulGrpfldMnd
25 1 rpcnd φA
26 2 rpcnd φB
27 3 rpcnd φC
28 4 rpcnd φD
29 27 28 jca φCD
30 25 26 29 jca32 φABCD
31 cnfldbas =Basefld
32 5 31 mgpbas =BasemulGrpfld
33 cnfldmul ×=fld
34 5 33 mgpplusg ×=+mulGrpfld
35 32 34 gsumws4 mulGrpfldMndABCDmulGrpfld⟨“ABCD”⟩=ABCD
36 24 30 35 syl2anc φmulGrpfld⟨“ABCD”⟩=ABCD
37 4nn0 40
38 hashfzo0 400..^4=4
39 37 38 mp1i φ0..^4=4
40 39 oveq2d φ10..^4=14
41 36 40 oveq12d φmulGrpfld⟨“ABCD”⟩10..^4=ABCD14
42 ringmnd fldRingfldMnd
43 22 42 mp1i φfldMnd
44 cnfldadd +=+fld
45 31 44 gsumws4 fldMndABCDfld⟨“ABCD”⟩=A+B+C+D
46 43 30 45 syl2anc φfld⟨“ABCD”⟩=A+B+C+D
47 46 39 oveq12d φfld⟨“ABCD”⟩0..^4=A+B+C+D4
48 21 41 47 3brtr3d φABCD14A+B+C+D4