| Step | Hyp | Ref | Expression | 
						
							| 1 |  | archiabllem.b |  | 
						
							| 2 |  | archiabllem.0 |  | 
						
							| 3 |  | archiabllem.e |  | 
						
							| 4 |  | archiabllem.t |  | 
						
							| 5 |  | archiabllem.m |  | 
						
							| 6 |  | archiabllem.g |  | 
						
							| 7 |  | archiabllem.a |  | 
						
							| 8 |  | archiabllem1.u |  | 
						
							| 9 |  | archiabllem1.p |  | 
						
							| 10 |  | archiabllem1.s |  | 
						
							| 11 |  | 0zd |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 1 2 5 | mulg0 |  | 
						
							| 14 | 8 13 | syl |  | 
						
							| 15 | 14 | ad2antrr |  | 
						
							| 16 | 12 15 | eqtr4d |  | 
						
							| 17 |  | oveq1 |  | 
						
							| 18 | 17 | rspceeqv |  | 
						
							| 19 | 11 16 18 | syl2anc |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 | 20 | nnzd |  | 
						
							| 22 | 21 | znegcld |  | 
						
							| 23 | 8 | 3ad2ant1 |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 5 25 | mulgnegnn |  | 
						
							| 27 | 20 24 26 | syl2anc |  | 
						
							| 28 |  | simpr |  | 
						
							| 29 | 28 | fveq2d |  | 
						
							| 30 | 6 | 3ad2ant1 |  | 
						
							| 31 |  | ogrpgrp |  | 
						
							| 32 | 30 31 | syl |  | 
						
							| 33 |  | simp2 |  | 
						
							| 34 | 1 25 | grpinvinv |  | 
						
							| 35 | 32 33 34 | syl2anc |  | 
						
							| 36 | 35 | ad2antrr |  | 
						
							| 37 | 27 29 36 | 3eqtr2rd |  | 
						
							| 38 |  | oveq1 |  | 
						
							| 39 | 38 | rspceeqv |  | 
						
							| 40 | 22 37 39 | syl2anc |  | 
						
							| 41 | 7 | 3ad2ant1 |  | 
						
							| 42 | 9 | 3ad2ant1 |  | 
						
							| 43 |  | simp1 |  | 
						
							| 44 | 43 10 | syl3an1 |  | 
						
							| 45 | 1 25 | grpinvcl |  | 
						
							| 46 | 32 33 45 | syl2anc |  | 
						
							| 47 | 1 2 | grpidcl |  | 
						
							| 48 | 32 47 | syl |  | 
						
							| 49 |  | simp3 |  | 
						
							| 50 |  | eqid |  | 
						
							| 51 | 1 4 50 | ogrpaddlt |  | 
						
							| 52 | 30 33 48 46 49 51 | syl131anc |  | 
						
							| 53 | 1 50 2 25 | grprinv |  | 
						
							| 54 | 32 33 53 | syl2anc |  | 
						
							| 55 | 1 50 2 | grplid |  | 
						
							| 56 | 32 46 55 | syl2anc |  | 
						
							| 57 | 52 54 56 | 3brtr3d |  | 
						
							| 58 | 1 2 3 4 5 30 41 23 42 44 46 57 | archiabllem1a |  | 
						
							| 59 | 40 58 | r19.29a |  | 
						
							| 60 | 59 | 3expa |  | 
						
							| 61 |  | nnssz |  | 
						
							| 62 | 6 | 3ad2ant1 |  | 
						
							| 63 | 7 | 3ad2ant1 |  | 
						
							| 64 | 8 | 3ad2ant1 |  | 
						
							| 65 | 9 | 3ad2ant1 |  | 
						
							| 66 |  | simp1 |  | 
						
							| 67 | 66 10 | syl3an1 |  | 
						
							| 68 |  | simp2 |  | 
						
							| 69 |  | simp3 |  | 
						
							| 70 | 1 2 3 4 5 62 63 64 65 67 68 69 | archiabllem1a |  | 
						
							| 71 | 70 | 3expa |  | 
						
							| 72 |  | ssrexv |  | 
						
							| 73 | 61 71 72 | mpsyl |  | 
						
							| 74 |  | isogrp |  | 
						
							| 75 | 74 | simprbi |  | 
						
							| 76 |  | omndtos |  | 
						
							| 77 | 6 75 76 | 3syl |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 |  | simpr |  | 
						
							| 80 | 6 31 47 | 3syl |  | 
						
							| 81 | 80 | adantr |  | 
						
							| 82 | 1 4 | tlt3 |  | 
						
							| 83 | 78 79 81 82 | syl3anc |  | 
						
							| 84 | 19 60 73 83 | mpjao3dan |  |