Description: Closure of the algebra scalar injection function in a polynomial on a subring. (Contributed by Thierry Arnoux, 5-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | asclply1subcl.1 | |
|
asclply1subcl.2 | |
||
asclply1subcl.3 | |
||
asclply1subcl.4 | |
||
asclply1subcl.5 | |
||
asclply1subcl.6 | |
||
asclply1subcl.7 | |
||
Assertion | asclply1subcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclply1subcl.1 | |
|
2 | asclply1subcl.2 | |
|
3 | asclply1subcl.3 | |
|
4 | asclply1subcl.4 | |
|
5 | asclply1subcl.5 | |
|
6 | asclply1subcl.6 | |
|
7 | asclply1subcl.7 | |
|
8 | eqid | |
|
9 | 8 | subrgss | |
10 | 6 9 | syl | |
11 | 10 7 | sseldd | |
12 | subrgrcl | |
|
13 | 3 | ply1sca | |
14 | 6 12 13 | 3syl | |
15 | 14 | fveq2d | |
16 | 11 15 | eleqtrd | |
17 | eqid | |
|
18 | eqid | |
|
19 | eqid | |
|
20 | eqid | |
|
21 | 1 17 18 19 20 | asclval | |
22 | 16 21 | syl | |
23 | 3 2 4 5 | subrgply1 | |
24 | eqid | |
|
25 | 24 19 | ressvsca | |
26 | 6 23 25 | 3syl | |
27 | 26 | oveqd | |
28 | id | |
|
29 | 20 | subrg1cl | |
30 | 6 23 29 | 3syl | |
31 | 3 2 4 5 6 24 | ressply1vsca | |
32 | 28 7 30 31 | syl12anc | |
33 | 27 32 | eqtr4d | |
34 | 2 | subrgring | |
35 | 4 | ply1lmod | |
36 | 6 34 35 | 3syl | |
37 | 2 8 | ressbas2 | |
38 | 6 9 37 | 3syl | |
39 | 7 38 | eleqtrd | |
40 | 2 | ovexi | |
41 | 4 | ply1sca | |
42 | 40 41 | ax-mp | |
43 | eqid | |
|
44 | eqid | |
|
45 | 5 42 43 44 | lmodvscl | |
46 | 36 39 30 45 | syl3anc | |
47 | 33 46 | eqeltrd | |
48 | 22 47 | eqeltrd | |