Metamath Proof Explorer


Theorem asin1

Description: The arcsine of 1 is _pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asin1 arcsin 1 = π 2

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 asinval 1 arcsin 1 = i log i 1 + 1 1 2
3 1 2 ax-mp arcsin 1 = i log i 1 + 1 1 2
4 ax-icn i
5 4 addid1i i + 0 = i
6 4 mulid1i i 1 = i
7 sq1 1 2 = 1
8 7 oveq2i 1 1 2 = 1 1
9 1m1e0 1 1 = 0
10 8 9 eqtri 1 1 2 = 0
11 10 fveq2i 1 1 2 = 0
12 sqrt0 0 = 0
13 11 12 eqtri 1 1 2 = 0
14 6 13 oveq12i i 1 + 1 1 2 = i + 0
15 efhalfpi e i π 2 = i
16 5 14 15 3eqtr4i i 1 + 1 1 2 = e i π 2
17 16 fveq2i log i 1 + 1 1 2 = log e i π 2
18 halfpire π 2
19 18 recni π 2
20 4 19 mulcli i π 2
21 pipos 0 < π
22 pire π
23 lt0neg2 π 0 < π π < 0
24 22 23 ax-mp 0 < π π < 0
25 21 24 mpbi π < 0
26 pirp π +
27 rphalfcl π + π 2 +
28 26 27 ax-mp π 2 +
29 rpgt0 π 2 + 0 < π 2
30 28 29 ax-mp 0 < π 2
31 22 renegcli π
32 0re 0
33 31 32 18 lttri π < 0 0 < π 2 π < π 2
34 25 30 33 mp2an π < π 2
35 20 addid2i 0 + i π 2 = i π 2
36 35 fveq2i 0 + i π 2 = i π 2
37 32 18 crimi 0 + i π 2 = π 2
38 36 37 eqtr3i i π 2 = π 2
39 34 38 breqtrri π < i π 2
40 rphalflt π + π 2 < π
41 26 40 ax-mp π 2 < π
42 18 22 41 ltleii π 2 π
43 38 42 eqbrtri i π 2 π
44 ellogrn i π 2 ran log i π 2 π < i π 2 i π 2 π
45 20 39 43 44 mpbir3an i π 2 ran log
46 logef i π 2 ran log log e i π 2 = i π 2
47 45 46 ax-mp log e i π 2 = i π 2
48 17 47 eqtri log i 1 + 1 1 2 = i π 2
49 48 oveq2i i log i 1 + 1 1 2 = i i π 2
50 4 4 mulneg1i i i = i i
51 ixi i i = 1
52 51 negeqi i i = -1
53 negneg1e1 -1 = 1
54 50 52 53 3eqtri i i = 1
55 54 oveq1i i i π 2 = 1 π 2
56 negicn i
57 56 4 19 mulassi i i π 2 = i i π 2
58 55 57 eqtr3i 1 π 2 = i i π 2
59 19 mulid2i 1 π 2 = π 2
60 58 59 eqtr3i i i π 2 = π 2
61 3 49 60 3eqtri arcsin 1 = π 2