Metamath Proof Explorer


Theorem atexch

Description: The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of Kalmbach p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in MegPav2000 p. 2345 (PDF p. 8) (use atnemeq0 to obtain atom inequality). (Contributed by NM, 27-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion atexch ACBHAtomsCHAtomsBACAB=0CAB

Proof

Step Hyp Ref Expression
1 atelch CHAtomsCC
2 chub2 CCACCAC
3 2 ancoms ACCCCAC
4 1 3 sylan2 ACCHAtomsCAC
5 4 3adant2 ACBHAtomsCHAtomsCAC
6 5 adantr ACBHAtomsCHAtomsBACAB=0CAC
7 cvp ACBHAtomsAB=0AAB
8 atelch BHAtomsBC
9 chjcl ACBCABC
10 8 9 sylan2 ACBHAtomsABC
11 cvpss ACABCAABAAB
12 10 11 syldan ACBHAtomsAABAAB
13 7 12 sylbid ACBHAtomsAB=0AAB
14 13 3adant3 ACBHAtomsCHAtomsAB=0AAB
15 14 adantld ACBHAtomsCHAtomsBACAB=0AAB
16 id ACAC
17 chub1 ACCCAAC
18 17 3adant2 ACBCCCAAC
19 18 a1d ACBCCCBACAAC
20 19 ancrd ACBCCCBACAACBAC
21 chjcl ACCCACC
22 21 3adant2 ACBCCCACC
23 chlub ACBCACCAACBACABAC
24 22 23 syld3an3 ACBCCCAACBACABAC
25 20 24 sylibd ACBCCCBACABAC
26 16 8 1 25 syl3an ACBHAtomsCHAtomsBACABAC
27 26 adantrd ACBHAtomsCHAtomsBACAB=0ABAC
28 15 27 jcad ACBHAtomsCHAtomsBACAB=0AABABAC
29 28 imp ACBHAtomsCHAtomsBACAB=0AABABAC
30 simp1 ACBCCCAC
31 9 3adant3 ACBCCCABC
32 30 22 31 3jca ACBCCCACACCABC
33 16 8 1 32 syl3an ACBHAtomsCHAtomsACACCABC
34 14 26 anim12d ACBHAtomsCHAtomsAB=0BACAABABAC
35 34 ancomsd ACBHAtomsCHAtomsBACAB=0AABABAC
36 psssstr AABABACAAC
37 35 36 syl6 ACBHAtomsCHAtomsBACAB=0AAC
38 chcv2 ACCHAtomsAACAAC
39 38 3adant2 ACBHAtomsCHAtomsAACAAC
40 37 39 sylibd ACBHAtomsCHAtomsBACAB=0AAC
41 cvnbtwn2 ACACCABCAACAABABACAB=AC
42 33 40 41 sylsyld ACBHAtomsCHAtomsBACAB=0AABABACAB=AC
43 42 imp ACBHAtomsCHAtomsBACAB=0AABABACAB=AC
44 29 43 mpd ACBHAtomsCHAtomsBACAB=0AB=AC
45 6 44 sseqtrrd ACBHAtomsCHAtomsBACAB=0CAB
46 45 ex ACBHAtomsCHAtomsBACAB=0CAB