Metamath Proof Explorer


Theorem athgt

Description: A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012)

Ref Expression
Hypotheses athgt.j ˙=joinK
athgt.c C=K
athgt.a A=AtomsK
Assertion athgt KHLpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s

Proof

Step Hyp Ref Expression
1 athgt.j ˙=joinK
2 athgt.c C=K
3 athgt.a A=AtomsK
4 eqid BaseK=BaseK
5 eqid <K=<K
6 eqid 0.K=0.K
7 eqid 1.K=1.K
8 4 5 6 7 hlhgt4 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.K
9 simpl1 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KKHL
10 hlop KHLKOP
11 4 6 op0cl KOP0.KBaseK
12 9 10 11 3syl KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.K0.KBaseK
13 simpl2l KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KxBaseK
14 simprll KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.K0.K<Kx
15 eqid K=K
16 4 15 5 1 2 3 hlrelat3 KHL0.KBaseKxBaseK0.K<KxpA0.KC0.K˙p0.K˙pKx
17 9 12 13 14 16 syl31anc KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.KC0.K˙p0.K˙pKx
18 simp11 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAKHL
19 simp3 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApA
20 6 2 3 atcvr0 KHLpA0.KCp
21 18 19 20 syl2anc KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.KCp
22 hlol KHLKOL
23 18 22 syl KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAKOL
24 4 3 atbase pApBaseK
25 24 3ad2ant3 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApBaseK
26 4 1 6 olj02 KOLpBaseK0.K˙p=p
27 23 25 26 syl2anc KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.K˙p=p
28 21 27 breqtrrd KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.KC0.K˙p
29 28 biantrurd KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.K˙pKx0.KC0.K˙p0.K˙pKx
30 27 breq1d KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.K˙pKxpKx
31 29 30 bitr3d KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.KC0.K˙p0.K˙pKxpKx
32 31 3expa KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.KC0.K˙p0.K˙pKxpKx
33 32 rexbidva KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpA0.KC0.K˙p0.K˙pKxpApKx
34 17 33 mpbid KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKx
35 simp11 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxKHL
36 25 3adant3r KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxpBaseK
37 simp12r KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxyBaseK
38 simp3r KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxpKx
39 simp2lr KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxx<Ky
40 hlpos KHLKPoset
41 35 40 syl KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxKPoset
42 simp12l KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxxBaseK
43 4 15 5 plelttr KPosetpBaseKxBaseKyBaseKpKxx<Kyp<Ky
44 41 36 42 37 43 syl13anc KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxpKxx<Kyp<Ky
45 38 39 44 mp2and KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxp<Ky
46 4 15 5 1 2 3 hlrelat3 KHLpBaseKyBaseKp<KyqApCp˙qp˙qKy
47 35 36 37 45 46 syl31anc KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxqApCp˙qp˙qKy
48 simp11 KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyKHL
49 48 hllatd KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyKLat
50 simp3ll KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKypA
51 50 24 syl KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKypBaseK
52 simp3lr KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyqA
53 4 3 atbase qAqBaseK
54 52 53 syl KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyqBaseK
55 4 1 latjcl KLatpBaseKqBaseKp˙qBaseK
56 49 51 54 55 syl3anc KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyp˙qBaseK
57 simp13 KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyzBaseK
58 simp3r KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyp˙qKy
59 simp2l KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyy<Kz
60 48 40 syl KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyKPoset
61 simp12 KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyyBaseK
62 4 15 5 plelttr KPosetp˙qBaseKyBaseKzBaseKp˙qKyy<Kzp˙q<Kz
63 60 56 61 57 62 syl13anc KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyp˙qKyy<Kzp˙q<Kz
64 58 59 63 mp2and KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyp˙q<Kz
65 4 15 5 1 2 3 hlrelat3 KHLp˙qBaseKzBaseKp˙q<KzrAp˙qCp˙q˙rp˙q˙rKz
66 48 56 57 64 65 syl31anc KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rp˙q˙rKz
67 simp1ll KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzKHL
68 67 hllatd KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzKLat
69 simp2ll KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzpA
70 69 24 syl KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzpBaseK
71 simp2lr KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzqA
72 71 53 syl KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzqBaseK
73 68 70 72 55 syl3anc KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzp˙qBaseK
74 simp3l KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzrA
75 4 3 atbase rArBaseK
76 74 75 syl KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzrBaseK
77 4 1 latjcl KLatp˙qBaseKrBaseKp˙q˙rBaseK
78 68 73 76 77 syl3anc KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzp˙q˙rBaseK
79 4 7 op1cl KOP1.KBaseK
80 67 10 79 3syl KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKz1.KBaseK
81 simp3r KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzp˙q˙rKz
82 simp1r KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzz<K1.K
83 67 40 syl KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzKPoset
84 simp1lr KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzzBaseK
85 4 15 5 plelttr KPosetp˙q˙rBaseKzBaseK1.KBaseKp˙q˙rKzz<K1.Kp˙q˙r<K1.K
86 83 78 84 80 85 syl13anc KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzp˙q˙rKzz<K1.Kp˙q˙r<K1.K
87 81 82 86 mp2and KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzp˙q˙r<K1.K
88 4 15 5 1 2 3 hlrelat3 KHLp˙q˙rBaseK1.KBaseKp˙q˙r<K1.KsAp˙q˙rCp˙q˙r˙sp˙q˙r˙sK1.K
89 67 78 80 87 88 syl31anc KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙sp˙q˙r˙sK1.K
90 simpl p˙q˙rCp˙q˙r˙sp˙q˙r˙sK1.Kp˙q˙rCp˙q˙r˙s
91 90 reximi sAp˙q˙rCp˙q˙r˙sp˙q˙r˙sK1.KsAp˙q˙rCp˙q˙r˙s
92 89 91 syl KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
93 92 3exp KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
94 93 exp4a KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
95 94 ex KHLzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
96 95 3adant2 KHLyBaseKzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
97 96 3imp KHLyBaseKzBaseKz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
98 97 3adant2l KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
99 98 imp KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙q˙rKzsAp˙q˙rCp˙q˙r˙s
100 99 anim2d KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rp˙q˙rKzp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
101 100 reximdva KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rp˙q˙rKzrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
102 66 101 mpd KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
103 102 3exp KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
104 103 exp4a KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
105 104 exp4a KHLyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
106 105 3adant2l KHLxBaseKyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
107 106 3imp1 KHLxBaseKyBaseKzBaseKy<Kzz<K1.KpAqAp˙qKyrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
108 107 anim2d KHLxBaseKyBaseKzBaseKy<Kzz<K1.KpAqApCp˙qp˙qKypCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
109 108 reximdva KHLxBaseKyBaseKzBaseKy<Kzz<K1.KpAqApCp˙qp˙qKyqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
110 109 3adant2l KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAqApCp˙qp˙qKyqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
111 110 3adant3r KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxqApCp˙qp˙qKyqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
112 47 111 mpd KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
113 112 3expia KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
114 113 expd KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
115 114 reximdvai KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpApKxpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
116 34 115 mpd KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
117 116 3exp1 KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
118 117 imp KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
119 118 rexlimdv KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
120 119 rexlimdvva KHLxBaseKyBaseKzBaseK0.K<Kxx<Kyy<Kzz<K1.KpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s
121 8 120 mpd KHLpAqApCp˙qrAp˙qCp˙q˙rsAp˙q˙rCp˙q˙r˙s