Description: Lemma for axcont . Eliminate the trivial cases from the previous lemmas. (Contributed by Scott Fenton, 20-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | axcontlem12 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal | |
|
2 | 1 | ralrimivw | |
3 | breq1 | |
|
4 | 3 | 2ralbidv | |
5 | 4 | rspcev | |
6 | 5 | expcom | |
7 | 2 6 | syl | |
8 | 7 | adantld | |
9 | 8 | adantld | |
10 | simprrl | |
|
11 | simprrr | |
|
12 | simprll | |
|
13 | simpl | |
|
14 | 11 12 13 | 3jca | |
15 | simprlr | |
|
16 | axcontlem11 | |
|
17 | 10 14 15 16 | syl12anc | |
18 | 17 | ex | |
19 | 9 18 | pm2.61ine | |
20 | 19 | ex | |
21 | 20 | rexlimiva | |
22 | df-ne | |
|
23 | 22 | con2bii | |
24 | 23 | ralbii | |
25 | ralnex | |
|
26 | 24 25 | bitri | |
27 | simpr3 | |
|
28 | eqeq2 | |
|
29 | 28 | rspccva | |
30 | opeq1 | |
|
31 | 30 | breq2d | |
32 | breq1 | |
|
33 | 31 32 | bitr4d | |
34 | 33 | ralbidv | |
35 | 29 34 | syl | |
36 | 35 | ralbidva | |
37 | 36 | biimpa | |
38 | 27 37 | sylan2 | |
39 | 38 5 | sylan2 | |
40 | 39 | ancoms | |
41 | 40 | expl | |
42 | 26 41 | sylbir | |
43 | 21 42 | pm2.61i | |