Metamath Proof Explorer


Theorem axlowdimlem14

Description: Lemma for axlowdim . Take two possible Q from axlowdimlem10 . They are the same iff their distinguished values are the same. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypotheses axlowdimlem14.1 Q=I+111NI+1×0
axlowdimlem14.2 R=J+111NJ+1×0
Assertion axlowdimlem14 NI1N1J1N1Q=RI=J

Proof

Step Hyp Ref Expression
1 axlowdimlem14.1 Q=I+111NI+1×0
2 axlowdimlem14.2 R=J+111NJ+1×0
3 1 axlowdimlem10 NI1N1Q𝔼N
4 elee NQ𝔼NQ:1N
5 4 adantr NI1N1Q𝔼NQ:1N
6 3 5 mpbid NI1N1Q:1N
7 6 ffnd NI1N1QFn1N
8 2 axlowdimlem10 NJ1N1R𝔼N
9 elee NR𝔼NR:1N
10 9 adantr NJ1N1R𝔼NR:1N
11 8 10 mpbid NJ1N1R:1N
12 11 ffnd NJ1N1RFn1N
13 eqfnfv QFn1NRFn1NQ=Ri1NQi=Ri
14 7 12 13 syl2an NI1N1NJ1N1Q=Ri1NQi=Ri
15 14 3impdi NI1N1J1N1Q=Ri1NQi=Ri
16 fznatpl1 NI1N1I+11N
17 16 3adant3 NI1N1J1N1I+11N
18 ax-1ne0 10
19 18 a1i NI1N1J1N1IJ10
20 1 axlowdimlem11 QI+1=1
21 20 a1i NI1N1J1N1IJQI+1=1
22 elfzelz I1N1I
23 22 zcnd I1N1I
24 elfzelz J1N1J
25 24 zcnd J1N1J
26 ax-1cn 1
27 addcan2 IJ1I+1=J+1I=J
28 26 27 mp3an3 IJI+1=J+1I=J
29 23 25 28 syl2an I1N1J1N1I+1=J+1I=J
30 29 3adant1 NI1N1J1N1I+1=J+1I=J
31 30 necon3bid NI1N1J1N1I+1J+1IJ
32 31 biimpar NI1N1J1N1IJI+1J+1
33 2 axlowdimlem12 I+11NI+1J+1RI+1=0
34 17 32 33 syl2an2r NI1N1J1N1IJRI+1=0
35 19 21 34 3netr4d NI1N1J1N1IJQI+1RI+1
36 df-ne QiRi¬Qi=Ri
37 fveq2 i=I+1Qi=QI+1
38 fveq2 i=I+1Ri=RI+1
39 37 38 neeq12d i=I+1QiRiQI+1RI+1
40 36 39 bitr3id i=I+1¬Qi=RiQI+1RI+1
41 40 rspcev I+11NQI+1RI+1i1N¬Qi=Ri
42 17 35 41 syl2an2r NI1N1J1N1IJi1N¬Qi=Ri
43 42 ex NI1N1J1N1IJi1N¬Qi=Ri
44 df-ne IJ¬I=J
45 rexnal i1N¬Qi=Ri¬i1NQi=Ri
46 43 44 45 3imtr3g NI1N1J1N1¬I=J¬i1NQi=Ri
47 46 con4d NI1N1J1N1i1NQi=RiI=J
48 15 47 sylbid NI1N1J1N1Q=RI=J