Metamath Proof Explorer


Theorem axtg5seg

Description: Five segments axiom, Axiom A5 of Schwabhauser p. 11. Take two triangles X Z U and A C V , a point Y on X Z , and a point B on A C . If all corresponding line segments except for Z U and C V are congruent ( i.e., X Y .A B , Y Z .B C , X U .A V , and Y U .B V ), then Z U and C V are also congruent. As noted in Axiom 5 of Tarski1999 p. 178, "this axiom is similar in character to the well-known theorems of Euclidean geometry that allow one to conclude, from hypotheses about the congruence of certain corresponding sides and angles in two triangles, the congruence of other corresponding sides and angles." (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses axtrkg.p P=BaseG
axtrkg.d -˙=distG
axtrkg.i I=ItvG
axtrkg.g φG𝒢Tarski
axtg5seg.1 φXP
axtg5seg.2 φYP
axtg5seg.3 φZP
axtg5seg.4 φAP
axtg5seg.5 φBP
axtg5seg.6 φCP
axtg5seg.7 φUP
axtg5seg.8 φVP
axtg5seg.9 φXY
axtg5seg.10 φYXIZ
axtg5seg.11 φBAIC
axtg5seg.12 φX-˙Y=A-˙B
axtg5seg.13 φY-˙Z=B-˙C
axtg5seg.14 φX-˙U=A-˙V
axtg5seg.15 φY-˙U=B-˙V
Assertion axtg5seg φZ-˙U=C-˙V

Proof

Step Hyp Ref Expression
1 axtrkg.p P=BaseG
2 axtrkg.d -˙=distG
3 axtrkg.i I=ItvG
4 axtrkg.g φG𝒢Tarski
5 axtg5seg.1 φXP
6 axtg5seg.2 φYP
7 axtg5seg.3 φZP
8 axtg5seg.4 φAP
9 axtg5seg.5 φBP
10 axtg5seg.6 φCP
11 axtg5seg.7 φUP
12 axtg5seg.8 φVP
13 axtg5seg.9 φXY
14 axtg5seg.10 φYXIZ
15 axtg5seg.11 φBAIC
16 axtg5seg.12 φX-˙Y=A-˙B
17 axtg5seg.13 φY-˙Z=B-˙C
18 axtg5seg.14 φX-˙U=A-˙V
19 axtg5seg.15 φY-˙U=B-˙V
20 df-trkg 𝒢Tarski=𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
21 inss2 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz
22 inss1 𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiCB
23 21 22 sstri 𝒢TarskiC𝒢TarskiB𝒢TarskiCBf|[˙Basef/p]˙[˙Itvf/i]˙Line𝒢f=xp,ypxzp|zxiyxziyyxiz𝒢TarskiCB
24 20 23 eqsstri 𝒢Tarski𝒢TarskiCB
25 24 4 sselid φG𝒢TarskiCB
26 1 2 3 istrkgcb G𝒢TarskiCBGVxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vxPyPaPbPzPyxIzy-˙z=a-˙b
27 26 simprbi G𝒢TarskiCBxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vxPyPaPbPzPyxIzy-˙z=a-˙b
28 27 simpld G𝒢TarskiCBxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙v
29 25 28 syl φxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙v
30 neeq1 x=XxyXy
31 oveq1 x=XxIz=XIz
32 31 eleq2d x=XyxIzyXIz
33 30 32 3anbi12d x=XxyyxIzbaIcXyyXIzbaIc
34 oveq1 x=Xx-˙y=X-˙y
35 34 eqeq1d x=Xx-˙y=a-˙bX-˙y=a-˙b
36 35 anbi1d x=Xx-˙y=a-˙by-˙z=b-˙cX-˙y=a-˙by-˙z=b-˙c
37 oveq1 x=Xx-˙u=X-˙u
38 37 eqeq1d x=Xx-˙u=a-˙vX-˙u=a-˙v
39 38 anbi1d x=Xx-˙u=a-˙vy-˙u=b-˙vX-˙u=a-˙vy-˙u=b-˙v
40 36 39 anbi12d x=Xx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙v
41 33 40 anbi12d x=XxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙v
42 41 imbi1d x=XxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙v
43 42 ralbidv x=XvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vvPXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙v
44 43 2ralbidv x=XbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vbPcPvPXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙v
45 44 2ralbidv x=XuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vuPaPbPcPvPXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙v
46 neeq2 y=YXyXY
47 eleq1 y=YyXIzYXIz
48 46 47 3anbi12d y=YXyyXIzbaIcXYYXIzbaIc
49 oveq2 y=YX-˙y=X-˙Y
50 49 eqeq1d y=YX-˙y=a-˙bX-˙Y=a-˙b
51 oveq1 y=Yy-˙z=Y-˙z
52 51 eqeq1d y=Yy-˙z=b-˙cY-˙z=b-˙c
53 50 52 anbi12d y=YX-˙y=a-˙by-˙z=b-˙cX-˙Y=a-˙bY-˙z=b-˙c
54 oveq1 y=Yy-˙u=Y-˙u
55 54 eqeq1d y=Yy-˙u=b-˙vY-˙u=b-˙v
56 55 anbi2d y=YX-˙u=a-˙vy-˙u=b-˙vX-˙u=a-˙vY-˙u=b-˙v
57 53 56 anbi12d y=YX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙v
58 48 57 anbi12d y=YXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙v
59 58 imbi1d y=YXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙v
60 59 ralbidv y=YvPXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vvPXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙v
61 60 2ralbidv y=YbPcPvPXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vbPcPvPXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙v
62 61 2ralbidv y=YuPaPbPcPvPXyyXIzbaIcX-˙y=a-˙by-˙z=b-˙cX-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vuPaPbPcPvPXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙v
63 oveq2 z=ZXIz=XIZ
64 63 eleq2d z=ZYXIzYXIZ
65 64 3anbi2d z=ZXYYXIzbaIcXYYXIZbaIc
66 oveq2 z=ZY-˙z=Y-˙Z
67 66 eqeq1d z=ZY-˙z=b-˙cY-˙Z=b-˙c
68 67 anbi2d z=ZX-˙Y=a-˙bY-˙z=b-˙cX-˙Y=a-˙bY-˙Z=b-˙c
69 68 anbi1d z=ZX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙v
70 65 69 anbi12d z=ZXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙v
71 oveq1 z=Zz-˙u=Z-˙u
72 71 eqeq1d z=Zz-˙u=c-˙vZ-˙u=c-˙v
73 70 72 imbi12d z=ZXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙vXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
74 73 ralbidv z=ZvPXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙vvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
75 74 2ralbidv z=ZbPcPvPXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙vbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
76 75 2ralbidv z=ZuPaPbPcPvPXYYXIzbaIcX-˙Y=a-˙bY-˙z=b-˙cX-˙u=a-˙vY-˙u=b-˙vz-˙u=c-˙vuPaPbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
77 45 62 76 rspc3v XPYPZPxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vuPaPbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
78 5 6 7 77 syl3anc φxPyPzPuPaPbPcPvPxyyxIzbaIcx-˙y=a-˙by-˙z=b-˙cx-˙u=a-˙vy-˙u=b-˙vz-˙u=c-˙vuPaPbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
79 29 78 mpd φuPaPbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙v
80 oveq2 u=UX-˙u=X-˙U
81 80 eqeq1d u=UX-˙u=a-˙vX-˙U=a-˙v
82 oveq2 u=UY-˙u=Y-˙U
83 82 eqeq1d u=UY-˙u=b-˙vY-˙U=b-˙v
84 81 83 anbi12d u=UX-˙u=a-˙vY-˙u=b-˙vX-˙U=a-˙vY-˙U=b-˙v
85 84 anbi2d u=UX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙v
86 85 anbi2d u=UXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙v
87 oveq2 u=UZ-˙u=Z-˙U
88 87 eqeq1d u=UZ-˙u=c-˙vZ-˙U=c-˙v
89 86 88 imbi12d u=UXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙vXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙vZ-˙U=c-˙v
90 89 2ralbidv u=UcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙vcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙vZ-˙U=c-˙v
91 oveq1 a=AaIc=AIc
92 91 eleq2d a=AbaIcbAIc
93 92 3anbi3d a=AXYYXIZbaIcXYYXIZbAIc
94 oveq1 a=Aa-˙b=A-˙b
95 94 eqeq2d a=AX-˙Y=a-˙bX-˙Y=A-˙b
96 95 anbi1d a=AX-˙Y=a-˙bY-˙Z=b-˙cX-˙Y=A-˙bY-˙Z=b-˙c
97 oveq1 a=Aa-˙v=A-˙v
98 97 eqeq2d a=AX-˙U=a-˙vX-˙U=A-˙v
99 98 anbi1d a=AX-˙U=a-˙vY-˙U=b-˙vX-˙U=A-˙vY-˙U=b-˙v
100 96 99 anbi12d a=AX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙vX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙v
101 93 100 anbi12d a=AXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙vXYYXIZbAIcX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙v
102 101 imbi1d a=AXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙vZ-˙U=c-˙vXYYXIZbAIcX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙vZ-˙U=c-˙v
103 102 2ralbidv a=AcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙U=a-˙vY-˙U=b-˙vZ-˙U=c-˙vcPvPXYYXIZbAIcX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙vZ-˙U=c-˙v
104 eleq1 b=BbAIcBAIc
105 104 3anbi3d b=BXYYXIZbAIcXYYXIZBAIc
106 oveq2 b=BA-˙b=A-˙B
107 106 eqeq2d b=BX-˙Y=A-˙bX-˙Y=A-˙B
108 oveq1 b=Bb-˙c=B-˙c
109 108 eqeq2d b=BY-˙Z=b-˙cY-˙Z=B-˙c
110 107 109 anbi12d b=BX-˙Y=A-˙bY-˙Z=b-˙cX-˙Y=A-˙BY-˙Z=B-˙c
111 oveq1 b=Bb-˙v=B-˙v
112 111 eqeq2d b=BY-˙U=b-˙vY-˙U=B-˙v
113 112 anbi2d b=BX-˙U=A-˙vY-˙U=b-˙vX-˙U=A-˙vY-˙U=B-˙v
114 110 113 anbi12d b=BX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙vX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙v
115 105 114 anbi12d b=BXYYXIZbAIcX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙vXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙v
116 115 imbi1d b=BXYYXIZbAIcX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙vZ-˙U=c-˙vXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙v
117 116 2ralbidv b=BcPvPXYYXIZbAIcX-˙Y=A-˙bY-˙Z=b-˙cX-˙U=A-˙vY-˙U=b-˙vZ-˙U=c-˙vcPvPXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙v
118 90 103 117 rspc3v UPAPBPuPaPbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙vcPvPXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙v
119 11 8 9 118 syl3anc φuPaPbPcPvPXYYXIZbaIcX-˙Y=a-˙bY-˙Z=b-˙cX-˙u=a-˙vY-˙u=b-˙vZ-˙u=c-˙vcPvPXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙v
120 79 119 mpd φcPvPXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙v
121 13 14 15 3jca φXYYXIZBAIC
122 16 17 jca φX-˙Y=A-˙BY-˙Z=B-˙C
123 18 19 jca φX-˙U=A-˙VY-˙U=B-˙V
124 121 122 123 jca32 φXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙VY-˙U=B-˙V
125 oveq2 c=CAIc=AIC
126 125 eleq2d c=CBAIcBAIC
127 126 3anbi3d c=CXYYXIZBAIcXYYXIZBAIC
128 oveq2 c=CB-˙c=B-˙C
129 128 eqeq2d c=CY-˙Z=B-˙cY-˙Z=B-˙C
130 129 anbi2d c=CX-˙Y=A-˙BY-˙Z=B-˙cX-˙Y=A-˙BY-˙Z=B-˙C
131 130 anbi1d c=CX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙vY-˙U=B-˙v
132 127 131 anbi12d c=CXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙vY-˙U=B-˙v
133 oveq1 c=Cc-˙v=C-˙v
134 133 eqeq2d c=CZ-˙U=c-˙vZ-˙U=C-˙v
135 132 134 imbi12d c=CXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙vXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙vY-˙U=B-˙vZ-˙U=C-˙v
136 oveq2 v=VA-˙v=A-˙V
137 136 eqeq2d v=VX-˙U=A-˙vX-˙U=A-˙V
138 oveq2 v=VB-˙v=B-˙V
139 138 eqeq2d v=VY-˙U=B-˙vY-˙U=B-˙V
140 137 139 anbi12d v=VX-˙U=A-˙vY-˙U=B-˙vX-˙U=A-˙VY-˙U=B-˙V
141 140 anbi2d v=VX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙vY-˙U=B-˙vX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙VY-˙U=B-˙V
142 141 anbi2d v=VXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙vY-˙U=B-˙vXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙VY-˙U=B-˙V
143 oveq2 v=VC-˙v=C-˙V
144 143 eqeq2d v=VZ-˙U=C-˙vZ-˙U=C-˙V
145 142 144 imbi12d v=VXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙vY-˙U=B-˙vZ-˙U=C-˙vXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙VY-˙U=B-˙VZ-˙U=C-˙V
146 135 145 rspc2v CPVPcPvPXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙vXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙VY-˙U=B-˙VZ-˙U=C-˙V
147 10 12 146 syl2anc φcPvPXYYXIZBAIcX-˙Y=A-˙BY-˙Z=B-˙cX-˙U=A-˙vY-˙U=B-˙vZ-˙U=c-˙vXYYXIZBAICX-˙Y=A-˙BY-˙Z=B-˙CX-˙U=A-˙VY-˙U=B-˙VZ-˙U=C-˙V
148 120 124 147 mp2d φZ-˙U=C-˙V